Patrick B Chen, Rachel Chen, Nathan LaPierre, Zeyuan Chen, Joel Mefford, Emilie Marcus, Matthew G Heffel, Daniela C Soto, Jason Ernst, Chongyuan Luo, Jonathan Flint
{"title":"互补测试确定了恐惧相关行为的数量性状基因座的中介效应基因。","authors":"Patrick B Chen, Rachel Chen, Nathan LaPierre, Zeyuan Chen, Joel Mefford, Emilie Marcus, Matthew G Heffel, Daniela C Soto, Jason Ernst, Chongyuan Luo, Jonathan Flint","doi":"10.1016/j.xgen.2024.100545","DOIUrl":null,"url":null,"abstract":"<p><p>Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100545"},"PeriodicalIF":11.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099346/pdf/","citationCount":"0","resultStr":"{\"title\":\"Complementation testing identifies genes mediating effects at quantitative trait loci underlying fear-related behavior.\",\"authors\":\"Patrick B Chen, Rachel Chen, Nathan LaPierre, Zeyuan Chen, Joel Mefford, Emilie Marcus, Matthew G Heffel, Daniela C Soto, Jason Ernst, Chongyuan Luo, Jonathan Flint\",\"doi\":\"10.1016/j.xgen.2024.100545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.</p>\",\"PeriodicalId\":72539,\"journal\":{\"name\":\"Cell genomics\",\"volume\":\" \",\"pages\":\"100545\"},\"PeriodicalIF\":11.1000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11099346/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell genomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xgen.2024.100545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Complementation testing identifies genes mediating effects at quantitative trait loci underlying fear-related behavior.
Knowing the genes involved in quantitative traits provides an entry point to understanding the biological bases of behavior, but there are very few examples where the pathway from genetic locus to behavioral change is known. To explore the role of specific genes in fear behavior, we mapped three fear-related traits, tested fourteen genes at six quantitative trait loci (QTLs) by quantitative complementation, and identified six genes. Four genes, Lamp, Ptprd, Nptx2, and Sh3gl, have known roles in synapse function; the fifth, Psip1, was not previously implicated in behavior; and the sixth is a long non-coding RNA, 4933413L06Rik, of unknown function. Variation in transcriptome and epigenetic modalities occurred preferentially in excitatory neurons, suggesting that genetic variation is more permissible in excitatory than inhibitory neuronal circuits. Our results relieve a bottleneck in using genetic mapping of QTLs to uncover biology underlying behavior and prompt a reconsideration of expected relationships between genetic and functional variation.