{"title":"耐力训练可抑制 JAK2/STAT3 通路,从而缓解 \"肌肉疏松症\"。","authors":"B Yao, L Li, X Guan, J Zhu, Q Liu, B Qu, H Ding","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081189/pdf/","citationCount":"0","resultStr":"{\"title\":\"Endurance Training Inhibits the JAK2/STAT3 Pathway to Alleviate Sarcopenia.\",\"authors\":\"B Yao, L Li, X Guan, J Zhu, Q Liu, B Qu, H Ding\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11081189/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Endurance Training Inhibits the JAK2/STAT3 Pathway to Alleviate Sarcopenia.
Aging leads to a decrease in muscle function, mass, and strength in skeletal muscle of animals and humans. The transcriptome identified activation of the JAK/STAT pathway, a pathway that is associated with skeletal muscle atrophy, and endurance training has a significant effect on improving sarcopenia; however, the exact mechanism still requires further study. We investigated the effect of endurance training on sarcopenia. Six-month-old male SAMR1 mice were used as a young control group (group C), and the same month-old male SAMP8 mice were divided into an exercise group (group E) and a model group (group M). A 3-month running exercise intervention was performed on group E, and the other two groups were kept normally. Aging caused significant signs of sarcopenia in the SAMP8 mice, and endurance training effectively improved muscle function, muscle mass, and muscle strength in the SAMP8 mice. The expression of JAK2/STAT3 pathway factor was decreased in group E compared with group M, and the expression of SOCS3, the target gene of STAT3, and NR1D1, an atrophy-related factor, was significantly increased. Endurance training significantly improved the phenotypes associated with sarcopenia, and the JAK2/STAT3 pathway is a possible mechanism for the improvement of sarcopenia by endurance training, while NR1D1 may be its potential target. Keywords: Sarcopenia, Endurance training, Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3), Nuclear receptor subfamily 1, group D member 1 (Nr1d1).
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.