在接受靶向治疗的表皮生长因子受体突变肺腺癌患者中结合临床因素、基于 18F-FDG PET 的强度、容积特征和深度学习预测因子的预后价值:一项跨扫描仪和时间验证研究。

IF 2.5 4区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Kun-Han Lue, Yu-Hung Chen, Sung-Chao Chu, Chih-Bin Lin, Tso-Fu Wang, Shu-Hsin Liu
{"title":"在接受靶向治疗的表皮生长因子受体突变肺腺癌患者中结合临床因素、基于 18F-FDG PET 的强度、容积特征和深度学习预测因子的预后价值:一项跨扫描仪和时间验证研究。","authors":"Kun-Han Lue,&nbsp;Yu-Hung Chen,&nbsp;Sung-Chao Chu,&nbsp;Chih-Bin Lin,&nbsp;Tso-Fu Wang,&nbsp;Shu-Hsin Liu","doi":"10.1007/s12149-024-01936-2","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><p>To investigate the prognostic value of <sup>18</sup>F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment.</p><h3>Methods</h3><p>We retrospectively analyzed the pre-treatment <sup>18</sup>F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (<i>n</i> = 166) and digital (<i>n</i> = 51) PET cohorts. <sup>18</sup>F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively.</p><h3>Results</h3><p>In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUV<sub>max</sub>, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, <i>p</i> &lt; 0.001) and digital PET cohorts (HR = 1.284, <i>p</i> = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, <i>p</i> &lt; 0.001, c-index = 0.708 and HR = 1.256, <i>p</i> = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively).</p><h3>Conclusions</h3><p>Combining <sup>18</sup>F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.</p></div>","PeriodicalId":8007,"journal":{"name":"Annals of Nuclear Medicine","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study\",\"authors\":\"Kun-Han Lue,&nbsp;Yu-Hung Chen,&nbsp;Sung-Chao Chu,&nbsp;Chih-Bin Lin,&nbsp;Tso-Fu Wang,&nbsp;Shu-Hsin Liu\",\"doi\":\"10.1007/s12149-024-01936-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><p>To investigate the prognostic value of <sup>18</sup>F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment.</p><h3>Methods</h3><p>We retrospectively analyzed the pre-treatment <sup>18</sup>F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (<i>n</i> = 166) and digital (<i>n</i> = 51) PET cohorts. <sup>18</sup>F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively.</p><h3>Results</h3><p>In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUV<sub>max</sub>, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, <i>p</i> &lt; 0.001) and digital PET cohorts (HR = 1.284, <i>p</i> = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, <i>p</i> &lt; 0.001, c-index = 0.708 and HR = 1.256, <i>p</i> = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively).</p><h3>Conclusions</h3><p>Combining <sup>18</sup>F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.</p></div>\",\"PeriodicalId\":8007,\"journal\":{\"name\":\"Annals of Nuclear Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Nuclear Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12149-024-01936-2\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Medicine","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12149-024-01936-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的研究在接受酪氨酸激酶抑制剂(TKI)治疗的表皮生长因子受体(EGFR)突变肺腺癌患者中,不同代PET扫描仪基于18F-FDG PET的强度、容积特征和深度学习(DL)的预后价值:我们回顾性分析了217例接受TKI一线治疗的可作用表皮生长因子受体突变晚期肺腺癌患者的治疗前18F-FDG PET。患者被分为模拟 PET 组(166 人)和数字 PET 组(51 人)。18F-FDG PET衍生强度、体积特征、原发肿瘤的ResNet-50 DL和临床变量被用来预测无进展生存期(PFS)。独立的预后指标被用于建立预测模型。分别在模拟和数字 PET 队列中建立并验证了模型:在模拟 PET 群体中,女性性别、IVB 期状态、19 号外显子缺失、SUVmax、代谢肿瘤体积和 DL 阳性预测可独立预测 PFS。根据这六项预后指标建立的模型可显著预测模拟组的生存期(HR = 1.319,p 结论:18F-FDG PET 可显著预测模拟组的生存期:将基于18F-FDG PET的强度、容积特征和DL与临床变量相结合,可改善接受TKI治疗的晚期EGFR突变肺腺癌患者的生存分层。在不同世代的 PET 扫描仪上应用该预测模型可能是可行的,并有助于为这些患者量身定制治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study

Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study

Prognostic value of combining clinical factors, 18F-FDG PET-based intensity, volumetric features, and deep learning predictor in patients with EGFR-mutated lung adenocarcinoma undergoing targeted therapies: a cross-scanner and temporal validation study

Objective

To investigate the prognostic value of 18F-FDG PET-based intensity, volumetric features, and deep learning (DL) across different generations of PET scanners in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma receiving tyrosine kinase inhibitor (TKI) treatment.

Methods

We retrospectively analyzed the pre-treatment 18F-FDG PET of 217 patients with advanced-stage lung adenocarcinoma and actionable EGFR mutations who received TKI as first-line treatment. Patients were separated into analog (n = 166) and digital (n = 51) PET cohorts. 18F-FDG PET-derived intensity, volumetric features, ResNet-50 DL of the primary tumor, and clinical variables were used to predict progression-free survival (PFS). Independent prognosticators were used to develop prediction model. Model was developed and validated in the analog and digital PET cohorts, respectively.

Results

In the analog PET cohort, female sex, stage IVB status, exon 19 deletion, SUVmax, metabolic tumor volume, and positive DL prediction independently predicted PFS. The model devised from these six prognosticators significantly predicted PFS in the analog (HR = 1.319, p < 0.001) and digital PET cohorts (HR = 1.284, p = 0.001). Our model provided incremental prognostic value to staging status (c-indices = 0.738 vs. 0.558 and 0.662 vs. 0.598 in the analog and digital PET cohorts, respectively). Our model also demonstrated a significant prognostic value for overall survival (HR = 1.198, p < 0.001, c-index = 0.708 and HR = 1.256, p = 0.021, c-index = 0.664 in the analog and digital PET cohorts, respectively).

Conclusions

Combining 18F-FDG PET-based intensity, volumetric features, and DL with clinical variables may improve the survival stratification in patients with advanced EGFR-mutated lung adenocarcinoma receiving TKI treatment. Implementing the prediction model across different generations of PET scanners may be feasible and facilitate tailored therapeutic strategies for these patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Nuclear Medicine
Annals of Nuclear Medicine 医学-核医学
CiteScore
4.90
自引率
7.70%
发文量
111
审稿时长
4-8 weeks
期刊介绍: Annals of Nuclear Medicine is an official journal of the Japanese Society of Nuclear Medicine. It develops the appropriate application of radioactive substances and stable nuclides in the field of medicine. The journal promotes the exchange of ideas and information and research in nuclear medicine and includes the medical application of radionuclides and related subjects. It presents original articles, short communications, reviews and letters to the editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信