Liu Chen , Bang Du , Ke Li , Kaiyun Li , TingTing Hou , Fanlu Jia , Li Li
{"title":"tDCS 对抑制控制的影响及其对自闭症谱系障碍儿童持续注意力的转移效应:一项 fNIRS 研究。","authors":"Liu Chen , Bang Du , Ke Li , Kaiyun Li , TingTing Hou , Fanlu Jia , Li Li","doi":"10.1016/j.brs.2024.04.019","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Individuals with autism spectrum disorder (ASD) have inhibitory control deficits. The combination of transcranial direct current stimulation (tDCS) and inhibitory control training produces good transfer effects and improves neuroplasticity. However, no studies have explored whether applying tDCS over the dlPFC improves inhibitory control and produces transfer effects in children with ASD.</p></div><div><h3>Objective</h3><p>To explore whether multisession tDCS could enhance inhibitory control training (response inhibition), near-transfer (interference control) and far-transfer effects (sustained attention; stability of attention) in children with ASD and the generalizability of training effects in daily life and the class, as reflected by behavioral performance and neural activity measured by functional near-infrared spectroscopy (fNIRS).</p></div><div><h3>Methods</h3><p>Twenty-eight autistic children were randomly assigned to either the true or sham tDCS group. The experimental group received bifrontal tDCS stimulation at 1.5 mA, administered for 15 min daily across eight consecutive days. tDCS was delivered during a computerized Go/No-go training task. Behavioral performance in terms of inhibitory control (Dog/Monkey and Day/Night Stroop tasks), sustained attention (Continuous Performance and Cancellation tests), prefrontal cortex (PFC) neural activity and inhibitory control and sustained attention in the class and at home were evaluated.</p></div><div><h3>Results</h3><p>Training (response inhibition) and transfer effects (interference control; sustained attention) were significantly greater after receiving tDCS during the Go/No-go training task than after receiving sham tDCS. Changes in oxyhemoglobin (HbO) concentrations in the dlPFC and FPA associated with consistent conditions in the Day/Night Stroop and Continuous Performance test were observed after applying tDCS during the inhibitory control training task. Notably, transfer effects can be generalized to classroom environments.</p></div><div><h3>Conclusion</h3><p>Inhibitory control training combined with tDCS may be a promising, safe, and effective method for improving inhibitory control and sustained attention in children with ASD.</p></div>","PeriodicalId":9206,"journal":{"name":"Brain Stimulation","volume":"17 3","pages":"Pages 594-606"},"PeriodicalIF":7.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1935861X24000810/pdfft?md5=80a4e7b91d7f9e575bcbba66345e1da2&pid=1-s2.0-S1935861X24000810-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The effect of tDCS on inhibitory control and its transfer effect on sustained attention in children with autism spectrum disorder: An fNIRS study\",\"authors\":\"Liu Chen , Bang Du , Ke Li , Kaiyun Li , TingTing Hou , Fanlu Jia , Li Li\",\"doi\":\"10.1016/j.brs.2024.04.019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Individuals with autism spectrum disorder (ASD) have inhibitory control deficits. The combination of transcranial direct current stimulation (tDCS) and inhibitory control training produces good transfer effects and improves neuroplasticity. However, no studies have explored whether applying tDCS over the dlPFC improves inhibitory control and produces transfer effects in children with ASD.</p></div><div><h3>Objective</h3><p>To explore whether multisession tDCS could enhance inhibitory control training (response inhibition), near-transfer (interference control) and far-transfer effects (sustained attention; stability of attention) in children with ASD and the generalizability of training effects in daily life and the class, as reflected by behavioral performance and neural activity measured by functional near-infrared spectroscopy (fNIRS).</p></div><div><h3>Methods</h3><p>Twenty-eight autistic children were randomly assigned to either the true or sham tDCS group. The experimental group received bifrontal tDCS stimulation at 1.5 mA, administered for 15 min daily across eight consecutive days. tDCS was delivered during a computerized Go/No-go training task. Behavioral performance in terms of inhibitory control (Dog/Monkey and Day/Night Stroop tasks), sustained attention (Continuous Performance and Cancellation tests), prefrontal cortex (PFC) neural activity and inhibitory control and sustained attention in the class and at home were evaluated.</p></div><div><h3>Results</h3><p>Training (response inhibition) and transfer effects (interference control; sustained attention) were significantly greater after receiving tDCS during the Go/No-go training task than after receiving sham tDCS. Changes in oxyhemoglobin (HbO) concentrations in the dlPFC and FPA associated with consistent conditions in the Day/Night Stroop and Continuous Performance test were observed after applying tDCS during the inhibitory control training task. Notably, transfer effects can be generalized to classroom environments.</p></div><div><h3>Conclusion</h3><p>Inhibitory control training combined with tDCS may be a promising, safe, and effective method for improving inhibitory control and sustained attention in children with ASD.</p></div>\",\"PeriodicalId\":9206,\"journal\":{\"name\":\"Brain Stimulation\",\"volume\":\"17 3\",\"pages\":\"Pages 594-606\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24000810/pdfft?md5=80a4e7b91d7f9e575bcbba66345e1da2&pid=1-s2.0-S1935861X24000810-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Stimulation\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1935861X24000810\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Stimulation","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1935861X24000810","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The effect of tDCS on inhibitory control and its transfer effect on sustained attention in children with autism spectrum disorder: An fNIRS study
Background
Individuals with autism spectrum disorder (ASD) have inhibitory control deficits. The combination of transcranial direct current stimulation (tDCS) and inhibitory control training produces good transfer effects and improves neuroplasticity. However, no studies have explored whether applying tDCS over the dlPFC improves inhibitory control and produces transfer effects in children with ASD.
Objective
To explore whether multisession tDCS could enhance inhibitory control training (response inhibition), near-transfer (interference control) and far-transfer effects (sustained attention; stability of attention) in children with ASD and the generalizability of training effects in daily life and the class, as reflected by behavioral performance and neural activity measured by functional near-infrared spectroscopy (fNIRS).
Methods
Twenty-eight autistic children were randomly assigned to either the true or sham tDCS group. The experimental group received bifrontal tDCS stimulation at 1.5 mA, administered for 15 min daily across eight consecutive days. tDCS was delivered during a computerized Go/No-go training task. Behavioral performance in terms of inhibitory control (Dog/Monkey and Day/Night Stroop tasks), sustained attention (Continuous Performance and Cancellation tests), prefrontal cortex (PFC) neural activity and inhibitory control and sustained attention in the class and at home were evaluated.
Results
Training (response inhibition) and transfer effects (interference control; sustained attention) were significantly greater after receiving tDCS during the Go/No-go training task than after receiving sham tDCS. Changes in oxyhemoglobin (HbO) concentrations in the dlPFC and FPA associated with consistent conditions in the Day/Night Stroop and Continuous Performance test were observed after applying tDCS during the inhibitory control training task. Notably, transfer effects can be generalized to classroom environments.
Conclusion
Inhibitory control training combined with tDCS may be a promising, safe, and effective method for improving inhibitory control and sustained attention in children with ASD.
期刊介绍:
Brain Stimulation publishes on the entire field of brain stimulation, including noninvasive and invasive techniques and technologies that alter brain function through the use of electrical, magnetic, radiowave, or focally targeted pharmacologic stimulation.
Brain Stimulation aims to be the premier journal for publication of original research in the field of neuromodulation. The journal includes: a) Original articles; b) Short Communications; c) Invited and original reviews; d) Technology and methodological perspectives (reviews of new devices, description of new methods, etc.); and e) Letters to the Editor. Special issues of the journal will be considered based on scientific merit.