{"title":"缺磷情况下植物免疫力和生物相互作用的调节。","authors":"Kanako Inoue, Natsuki Tsuchida, Yusuke Saijo","doi":"10.1007/s10265-024-01546-z","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.</p>","PeriodicalId":16813,"journal":{"name":"Journal of Plant Research","volume":" ","pages":"343-357"},"PeriodicalIF":2.7000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of plant immunity and biotic interactions under phosphate deficiency.\",\"authors\":\"Kanako Inoue, Natsuki Tsuchida, Yusuke Saijo\",\"doi\":\"10.1007/s10265-024-01546-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.</p>\",\"PeriodicalId\":16813,\"journal\":{\"name\":\"Journal of Plant Research\",\"volume\":\" \",\"pages\":\"343-357\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plant Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10265-024-01546-z\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plant Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10265-024-01546-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
磷(P)是植物生命和生长所必需的宏量营养元素。磷主要以无机磷酸盐(Pi)的形式从土壤中获取。为了应对缺磷问题,植物进化出了一套精心设计的系统,通过一系列发育和生理变化(称为 "缺磷反应"(PSR))来改善对磷的获取和利用。植物还通过整合 PSR 和免疫信号来组合和管理互助微生物,以提高钙的吸收。植物生长与防御之间的权衡倾向于这样一种观点,即植物以感染风险为代价,降低细胞免疫状态,以适应对宿主有益的微生物的营养和生长。然而,现有数据表明,即使在营养缺乏的情况下,植物也会选择性地激活针对病原体的防御反应,但不会或较少激活针对非病原体的防御反应。在本综述中,我们将重点介绍植物平衡免疫和生长相关过程的原理和机制方面的最新进展,以优化植物对π缺乏的适应。
Modulation of plant immunity and biotic interactions under phosphate deficiency.
Phosphorus (P) is an essential macronutrient for plant life and growth. P is primarily acquired in the form of inorganic phosphate (Pi) from soil. To cope with Pi deficiency, plants have evolved an elaborate system to improve Pi acquisition and utilization through an array of developmental and physiological changes, termed Pi starvation response (PSR). Plants also assemble and manage mutualistic microbes to enhance Pi uptake, through integrating PSR and immunity signaling. A trade-off between plant growth and defense favors the notion that plants lower a cellular state of immunity to accommodate host-beneficial microbes for nutrition and growth at the cost of infection risk. However, the existing data indicate that plants selectively activate defense responses against pathogens, but do not or less against non-pathogens, even under nutrient deficiency. In this review, we highlight recent advances in the principles and mechanisms with which plants balance immunity and growth-related processes to optimize their adaptation to Pi deficiency.
期刊介绍:
The Journal of Plant Research is an international publication that gathers and disseminates fundamental knowledge in all areas of plant sciences. Coverage extends to every corner of the field, including such topics as evolutionary biology, phylogeography, phylogeny, taxonomy, genetics, ecology, morphology, physiology, developmental biology, cell biology, molecular biology, biochemistry, biophysics, bioinformatics, and systems biology.
The journal presents full-length research articles that describe original and fundamental findings of significance that contribute to understanding of plants, as well as shorter communications reporting significant new findings, technical notes on new methodology, and invited review articles.