Ellen De-Pieri, Rubya Pereira Zaccaron, Camille Generoso Mezzari, Mariana de Melo Cardoso, Laura De Roch Casagrande, Paulo Cesar Lock Silveira, Ricardo Andrez Machado-de-Ávila
{"title":"DAP1-2:一种靶向 IL-1R1 受体的合成肽,可在体外有效抑制 IL-1β。","authors":"Ellen De-Pieri, Rubya Pereira Zaccaron, Camille Generoso Mezzari, Mariana de Melo Cardoso, Laura De Roch Casagrande, Paulo Cesar Lock Silveira, Ricardo Andrez Machado-de-Ávila","doi":"10.1007/s12026-024-09485-6","DOIUrl":null,"url":null,"abstract":"<p><p>The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1β standing out as a pivotal cytokine. The excessive presence of IL-1β disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1β levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1β. Several pharmaceuticals have entered the market, aiming to neutralize IL-1β's biological function through diverse mechanisms. However, the existing IL-1β inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1β by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 μg/mL) for 24 h to induce IL-1β expression and treated with the peptides in different concentrations. IL-1β levels were assessed using ELISA, and the gene expression of IL-1β was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1β levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DAP1-2: a synthetic peptide targeting IL-1R1 receptor effectively suppresses IL-1β in vitro.\",\"authors\":\"Ellen De-Pieri, Rubya Pereira Zaccaron, Camille Generoso Mezzari, Mariana de Melo Cardoso, Laura De Roch Casagrande, Paulo Cesar Lock Silveira, Ricardo Andrez Machado-de-Ávila\",\"doi\":\"10.1007/s12026-024-09485-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1β standing out as a pivotal cytokine. The excessive presence of IL-1β disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1β levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1β. Several pharmaceuticals have entered the market, aiming to neutralize IL-1β's biological function through diverse mechanisms. However, the existing IL-1β inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1β by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 μg/mL) for 24 h to induce IL-1β expression and treated with the peptides in different concentrations. IL-1β levels were assessed using ELISA, and the gene expression of IL-1β was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1β levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12026-024-09485-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12026-024-09485-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
DAP1-2: a synthetic peptide targeting IL-1R1 receptor effectively suppresses IL-1β in vitro.
The pathological manifestation of the inflammatory process primarily stems from the heightened release of pro-inflammatory cytokines, with IL-1β standing out as a pivotal cytokine. The excessive presence of IL-1β disrupts immune signaling, thereby assuming a pathogenic and exacerbating role in the pathophysiology of numerous inflammatory diseases. Regulating IL-1β levels becomes crucial, and the IL-1Ra molecule serves this purpose by binding to the IL-1R1 receptor, thereby impeding the binding of IL-1β. Several pharmaceuticals have entered the market, aiming to neutralize IL-1β's biological function through diverse mechanisms. However, the existing IL-1β inhibitors are recombinant proteins, characterized by a high production cost and limited stability. Therefore, this study aimed to predict a peptide, named DAP1-2, based on the IL-1Ra molecule. DAP1-2 was designed to attenuate responses triggered by IL-1β by blocking the IL-1R1 receptor. The selection of amino acids from the IL-1Ra molecule (PDB: I1RA) that interact with the three domains of the IL-1R1 receptor was performed using Swiss PDB Viewer. After prediction, chemical synthesis was made using the Fmoc-Synthesis technique. The efficacy of DAP1-2 was assessed using RAW 264.7 cells, which were exposed to LPS (5 μg/mL) for 24 h to induce IL-1β expression and treated with the peptides in different concentrations. IL-1β levels were assessed using ELISA, and the gene expression of IL-1β was measured by RT-qPCR, additionally to the viability test. Results revealed a significant reduction in IL-1β levels and gene expression in cells stimulated by LPS and treated with DAP1-2 in different concentrations. Furthermore, the MTT assay confirmed the nontoxic nature of the peptides on the cell lineage. This alternative approach shows promise as an IL-1 inhibitor, due to the stability, ease of production, and cost-effectiveness provided by the use of synthetic peptides.