使用随机森林预测比利时蓝杂交种的体重。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Accounts of Chemical Research Pub Date : 2024-03-31 eCollection Date: 2024-03-01 DOI:10.5455/javar.2024.k763
Lisa Praharani, Chalid Talib, Diana Andrianita Kusumaningrum, Yeni Widiawati, Santiananda Arta Asmarasari, Supardi Rusdiana, Zultinur Muttaqin, Ria Sari Gail Sianturi, Elizabeth Wina, Endang Sopian, Aqdi Faturahman Arrazy, Umi Adiati, Ferdy Saputra
{"title":"使用随机森林预测比利时蓝杂交种的体重。","authors":"Lisa Praharani, Chalid Talib, Diana Andrianita Kusumaningrum, Yeni Widiawati, Santiananda Arta Asmarasari, Supardi Rusdiana, Zultinur Muttaqin, Ria Sari Gail Sianturi, Elizabeth Wina, Endang Sopian, Aqdi Faturahman Arrazy, Umi Adiati, Ferdy Saputra","doi":"10.5455/javar.2024.k763","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to predict the body weight (BW) of a Belgian Blue X Friesian Holstein (BB X FH) crossbred in Indonesia based on morphometrics using random forest.</p><p><strong>Materials and methods: </strong>A total of 26 BB X FH crossbreds were observed for BW, chest weight (CW), body length (BL), hip height (HH), wither height (WH), and chest girth (CG) from 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 days of age. Stepwise regression and random forest were performed using R 3.6.1.</p><p><strong>Results: </strong>The random forest results show that CG is an important variable in estimating BW, with an important variable value of 24.49%. Likewise, the results obtained by stepwise regression show that CG can be an indicator of selection for the BB X FH crossbred. The <i>R</i> squared value obtained from the regression is 0.83, while the <i>R</i> squared value obtained from the random forest (0.86) is greater than the regression.</p><p><strong>Conclusion: </strong>In conclusion, random forest produces a better model than stepwise regression. However, a good simple equation to use to estimate BW is CG.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055585/pdf/","citationCount":"0","resultStr":"{\"title\":\"Body weight prediction of Belgian Blue crossbred using random forest.\",\"authors\":\"Lisa Praharani, Chalid Talib, Diana Andrianita Kusumaningrum, Yeni Widiawati, Santiananda Arta Asmarasari, Supardi Rusdiana, Zultinur Muttaqin, Ria Sari Gail Sianturi, Elizabeth Wina, Endang Sopian, Aqdi Faturahman Arrazy, Umi Adiati, Ferdy Saputra\",\"doi\":\"10.5455/javar.2024.k763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The aim of this study was to predict the body weight (BW) of a Belgian Blue X Friesian Holstein (BB X FH) crossbred in Indonesia based on morphometrics using random forest.</p><p><strong>Materials and methods: </strong>A total of 26 BB X FH crossbreds were observed for BW, chest weight (CW), body length (BL), hip height (HH), wither height (WH), and chest girth (CG) from 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 days of age. Stepwise regression and random forest were performed using R 3.6.1.</p><p><strong>Results: </strong>The random forest results show that CG is an important variable in estimating BW, with an important variable value of 24.49%. Likewise, the results obtained by stepwise regression show that CG can be an indicator of selection for the BB X FH crossbred. The <i>R</i> squared value obtained from the regression is 0.83, while the <i>R</i> squared value obtained from the random forest (0.86) is greater than the regression.</p><p><strong>Conclusion: </strong>In conclusion, random forest produces a better model than stepwise regression. However, a good simple equation to use to estimate BW is CG.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11055585/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5455/javar.2024.k763\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5455/javar.2024.k763","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究目的本研究的目的是利用随机森林技术,基于形态计量学预测印度尼西亚比利时蓝X弗里斯兰荷斯坦(BB X FH)杂交种的体重(BW):从 0、30、60、90、120、150、180、210、240、270 和 300 日龄开始,对 26 头 BB X FH 杂交母牛的体重、胸重(CW)、体长(BL)、臀高(HH)、枯高(WH)和胸围(CG)进行观察。使用 R 3.6.1 进行了逐步回归和随机森林分析:随机森林结果显示,CG 是估计体重的一个重要变量,其重要变量值为 24.49%。同样,逐步回归的结果表明,CG 可以作为 BB X FH 杂交品种的选择指标。回归得到的 R 平方值为 0.83,而随机森林得到的 R 平方值(0.86)大于回归:总之,随机森林比逐步回归能生成更好的模型。然而,用于估计 BW 的一个很好的简单方程是 CG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Body weight prediction of Belgian Blue crossbred using random forest.

Objective: The aim of this study was to predict the body weight (BW) of a Belgian Blue X Friesian Holstein (BB X FH) crossbred in Indonesia based on morphometrics using random forest.

Materials and methods: A total of 26 BB X FH crossbreds were observed for BW, chest weight (CW), body length (BL), hip height (HH), wither height (WH), and chest girth (CG) from 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, and 300 days of age. Stepwise regression and random forest were performed using R 3.6.1.

Results: The random forest results show that CG is an important variable in estimating BW, with an important variable value of 24.49%. Likewise, the results obtained by stepwise regression show that CG can be an indicator of selection for the BB X FH crossbred. The R squared value obtained from the regression is 0.83, while the R squared value obtained from the random forest (0.86) is greater than the regression.

Conclusion: In conclusion, random forest produces a better model than stepwise regression. However, a good simple equation to use to estimate BW is CG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信