探索钙和氯激活光合系统 II 中 O2 演化的相互依存关系。

IF 2.9 3区 生物学 Q2 PLANT SCIENCES
Alice Haddy, Shilpa Beravolu, Jeremiah Johnston, Hannah Kern, Monica McDaniel, Brandon Ore, Rachel Reed, Henry Tai
{"title":"探索钙和氯激活光合系统 II 中 O2 演化的相互依存关系。","authors":"Alice Haddy, Shilpa Beravolu, Jeremiah Johnston, Hannah Kern, Monica McDaniel, Brandon Ore, Rachel Reed, Henry Tai","doi":"10.1007/s11120-024-01094-6","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn<sub>4</sub>CaO<sub>5</sub> cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, K<sub>M</sub>, for each ion is less than the dissociation constant, K<sub>S</sub>, and that the affinity of PSII for Ca<sup>2+</sup> is about ten-fold greater than for Cl<sup>-</sup>, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl<sup>-</sup> and lower affinity for Ca<sup>2+</sup>. Observation of the slow-decaying Tyr Z radical, Y<sub>Z</sub>•, at 77 K and the coupled S<sub>2</sub>Y<sub>Z</sub>• radical at 10 K, which are both associated with Ca<sup>2+</sup> depletion, shows that Cl<sup>-</sup> is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S<sub>3</sub> state preceding Ca<sup>2+</sup> loss and possibly for stabilization of Y<sub>Z</sub>• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl<sup>-</sup> at the Cl-1 site and the Ca<sup>2+</sup>/Tyr Z region.</p>","PeriodicalId":20130,"journal":{"name":"Photosynthesis Research","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the interdependence of calcium and chloride activation of O<sub>2</sub> evolution in photosystem II.\",\"authors\":\"Alice Haddy, Shilpa Beravolu, Jeremiah Johnston, Hannah Kern, Monica McDaniel, Brandon Ore, Rachel Reed, Henry Tai\",\"doi\":\"10.1007/s11120-024-01094-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn<sub>4</sub>CaO<sub>5</sub> cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, K<sub>M</sub>, for each ion is less than the dissociation constant, K<sub>S</sub>, and that the affinity of PSII for Ca<sup>2+</sup> is about ten-fold greater than for Cl<sup>-</sup>, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl<sup>-</sup> and lower affinity for Ca<sup>2+</sup>. Observation of the slow-decaying Tyr Z radical, Y<sub>Z</sub>•, at 77 K and the coupled S<sub>2</sub>Y<sub>Z</sub>• radical at 10 K, which are both associated with Ca<sup>2+</sup> depletion, shows that Cl<sup>-</sup> is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S<sub>3</sub> state preceding Ca<sup>2+</sup> loss and possibly for stabilization of Y<sub>Z</sub>• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl<sup>-</sup> at the Cl-1 site and the Ca<sup>2+</sup>/Tyr Z region.</p>\",\"PeriodicalId\":20130,\"journal\":{\"name\":\"Photosynthesis Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthesis Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11120-024-01094-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthesis Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11120-024-01094-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

钙和氯是高等植物、藻类和蓝藻的光吸收水氧化酶--光系统 II(PSII)中氧进化的激活剂。钙是进行水氧化的催化 Mn4CaO5 簇的重要组成部分,氯在附近有两个结合位点,其中一个与主要的水通道有关。利用双底物酶动力学方法,研究了缺乏外在 PsbP 和 PsbQ 亚基的高等植物 PSII 中这两种离子共同激活氧进化的情况。对 pH 值为 6.3 的三种不同制备物的分析表明,每种离子的迈克尔斯常数(KM)都小于解离常数(KS),PSII 对 Ca2+ 的亲和力是对 Cl- 的亲和力的十倍,这与之前的研究一致。结果与顺序结合模型一致,即任一离子都能首先结合,并且每种离子都能促进第二种离子的激活。在 pH 值为 5.5 时,也发现了类似的结果,只是对 Cl- 的亲和力较高,而对 Ca2+ 的亲和力较低。对 77 K 时缓慢衰减的 Tyr Z 自由基 YZ- 和 10 K 时耦合的 S2YZ- 自由基的观察表明,Cl- 是观察它们的必要条件。考虑到电子和质子转移事件的顺序,这表明在 Ca2+ 丢失之前达到 S3 状态需要氯化物,在 YZ- 形成之后稳定 YZ- 也可能需要氯化物。在 Cl-1 位点的 Cl- 与 Ca2+/Tyr Z 区域之间的水环境背景下,考虑了通过氢键的相互依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring the interdependence of calcium and chloride activation of O<sub>2</sub> evolution in photosystem II.

Exploring the interdependence of calcium and chloride activation of O2 evolution in photosystem II.

Calcium and chloride are activators of oxygen evolution in photosystem II (PSII), the light-absorbing water oxidase of higher plants, algae, and cyanobacteria. Calcium is an essential part of the catalytic Mn4CaO5 cluster that carries out water oxidation and chloride has two nearby binding sites, one of which is associated with a major water channel. The co-activation of oxygen evolution by the two ions is examined in higher plant PSII lacking the extrinsic PsbP and PsbQ subunits using a bisubstrate enzyme kinetics approach. Analysis of three different preparations at pH 6.3 indicates that the Michaelis constant, KM, for each ion is less than the dissociation constant, KS, and that the affinity of PSII for Ca2+ is about ten-fold greater than for Cl-, in agreement with previous studies. Results are consistent with a sequential binding model in which either ion can bind first and each promotes the activation by the second ion. At pH 5.5, similar results are found, except with a higher affinity for Cl- and lower affinity for Ca2+. Observation of the slow-decaying Tyr Z radical, YZ•, at 77 K and the coupled S2YZ• radical at 10 K, which are both associated with Ca2+ depletion, shows that Cl- is necessary for their observation. Given the order of electron and proton transfer events, this indicates that chloride is required to reach the S3 state preceding Ca2+ loss and possibly for stabilization of YZ• after it forms. Interdependence through hydrogen bonding is considered in the context of the water environment that intervenes between Cl- at the Cl-1 site and the Ca2+/Tyr Z region.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthesis Research
Photosynthesis Research 生物-植物科学
CiteScore
6.90
自引率
8.10%
发文量
91
审稿时长
4.5 months
期刊介绍: Photosynthesis Research is an international journal open to papers of merit dealing with both basic and applied aspects of photosynthesis. It covers all aspects of photosynthesis research, including, but not limited to, light absorption and emission, excitation energy transfer, primary photochemistry, model systems, membrane components, protein complexes, electron transport, photophosphorylation, carbon assimilation, regulatory phenomena, molecular biology, environmental and ecological aspects, photorespiration, and bacterial and algal photosynthesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信