超声引导下经皮腋动脉插管用于体外膜肺氧合的可行性及其对体外膜肺氧合患者恢复自主心跳的影响

IF 1.9 4区 医学 Q3 INTEGRATIVE & COMPLEMENTARY MEDICINE
Minlong Liu, Guihe Zhang, Yizhan Cao, Chao Li, Bo Shi, Maomao Zhao, Gang Lin, Xin Chang, Xiangming Ma, Qing Li, Jie Zhao, Dong Chen, Long Zhang
{"title":"超声引导下经皮腋动脉插管用于体外膜肺氧合的可行性及其对体外膜肺氧合患者恢复自主心跳的影响","authors":"Minlong Liu, Guihe Zhang, Yizhan Cao, Chao Li, Bo Shi, Maomao Zhao, Gang Lin, Xin Chang, Xiangming Ma, Qing Li, Jie Zhao, Dong Chen, Long Zhang","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The measurement of the right and left axillary arteries and aortic arch and their vessels by multi-row spiral CT angiography provides the basis for clinical catheter selection and depth for axillary artery placement. This study reported the clinical experience of 7 patients who successfully underwent ultrasound-guided percutaneous axillary artery cannulation for veno-arterial extracorporeal membrane oxygenation (VA-ECMO).</p><p><strong>Methods: </strong>Patients who had CT angiography of the thoracic aorta at our institution between January 2020 and March 2022 were assessed for eligibility and included. The diameters of the cephalic trunk (D1), right common carotid artery (D2), right axillary artery (D3), left common carotid artery (D4), left axillary artery opening (D5), right axillary artery cannulation length (L1), and left axillary artery cannulation length (L2) were measured. The tangential angles α, β, and γ of the cephalic trunk, left common carotid artery and left subclavian and aorta was measured using an automatic angle-forming tool. The decision to use a 15F cannula for ultrasound-guided percutaneous axillary artery cannulation in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) aims to achieve optimal vascular access. This cannula size strikes a balance, providing sufficient blood flow rates for ECMO support while minimizing the risk of complications associated with larger cannulas. Precise measurements of arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries, play a crucial role in guiding catheter selection and determining the depth of axillary artery placement. These measurements allow for tailored approaches based on individual patient characteristics, enhancing the safety and efficacy of the intervention. Additionally, measuring tangential angles (α, β, and γ) provides insights into arterial alignment, optimizing the cannula trajectory for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy, minimizing complications, and ensuring the success of ultrasound-guided percutaneous axillary artery cannulation. In summary, the choice of a 15F cannula and precise measurements are essential components of the methodology, emphasizing safety, efficacy, and personalized approaches in VA-ECMO. From March to June 2022, 7 patients (6 males and 1 female) in our intensive care medicine department underwent successful ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with 15F cannula, including 3 cases with extracorporeal cardiopulmonary resuscitation (ECPR) and 4 cases with circulatory collapse.</p><p><strong>Results: </strong>292 patients met the study criteria, 215 males and 77 females, with a mean age of 67.2±14.2 years. The measurements showed that D1 was (13.1±2.0) mm, D2 was (8.8±2.5) mm, D3 was (6.1±1.2) mm, D4 was (8.3±3.5) mm, D5 was (6.1±1.1) mm, L1 was (114.1±17.8) mm, and L2 was (128.4±20.2) mm. The tangential angles α of the cephalic trunk left common carotid artery and left subclavian artery to the aorta were (43.8°±17.1°), β was (50.7°±14.8°), and γ was (62.4°±19.1°). Males had significantly wider D3 and D5, longer L1 and L2, and smaller gamma angles than females (P < .05). Three ECPR cases showed no recovery of the spontaneous heartbeat with femoral artery cannulation for VA-ECMO but recovered spontaneous heartbeat after axillary artery cannulation for VA-ECMO was adopted. The measurements in this study have important implications for veno-arterial extracorporeal membrane oxygenation (VA-ECMO) procedures. They provide crucial information about arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries. This information guides clinicians in selecting catheters and determining the ideal depth for percutaneous axillary artery cannulation during ECMO interventions. Notable gender differences in arterial dimensions highlight the need for personalized approaches in ECMO procedures. Customizing catheter choices and cannulation depth based on individual patient characteristics, informed by these measurements, improves the safety and effectiveness of the intervention. The measured tangential angles (α, β, and γ) offer insights into arterial alignment, crucial for optimizing cannula trajectory and ensuring proper alignment for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy and minimizing the risk of complications during ECMO procedures. In summary, these measurements directly enhance the precision and safety of VA-ECMO procedures, underscoring the importance of personalized approaches based on individual anatomical variations and improving overall intervention success and outcomes.</p><p><strong>Conclusion: </strong>Ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with a 15F cannula is clinically feasible. Axillary artery cannulation for VA-ECMO contributes to the restoration of spontaneous heartbeat in ECPR patients more than femoral artery cannulation, and the possible mechanism is a better improvement of coronary blood flow. However, the study has limitations, including a modest sample size and a single-center, retrospective design, impacting its generalizability. To validate and extend these findings, further research with larger and diverse cohorts, including prospective investigations, is necessary to ensure their applicability across various clinical settings and patient demographics in VA-ECMO.</p>","PeriodicalId":7571,"journal":{"name":"Alternative therapies in health and medicine","volume":" ","pages":"192-199"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Ultrasound-Guided Percutaneous Axillary Artery Cannulation for Veno-Arterial Extracorporeal Membrane Oxygenation and its Effect on the Recovery of Spontaneous Heartbeat in Patients with ECPR.\",\"authors\":\"Minlong Liu, Guihe Zhang, Yizhan Cao, Chao Li, Bo Shi, Maomao Zhao, Gang Lin, Xin Chang, Xiangming Ma, Qing Li, Jie Zhao, Dong Chen, Long Zhang\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>The measurement of the right and left axillary arteries and aortic arch and their vessels by multi-row spiral CT angiography provides the basis for clinical catheter selection and depth for axillary artery placement. This study reported the clinical experience of 7 patients who successfully underwent ultrasound-guided percutaneous axillary artery cannulation for veno-arterial extracorporeal membrane oxygenation (VA-ECMO).</p><p><strong>Methods: </strong>Patients who had CT angiography of the thoracic aorta at our institution between January 2020 and March 2022 were assessed for eligibility and included. The diameters of the cephalic trunk (D1), right common carotid artery (D2), right axillary artery (D3), left common carotid artery (D4), left axillary artery opening (D5), right axillary artery cannulation length (L1), and left axillary artery cannulation length (L2) were measured. The tangential angles α, β, and γ of the cephalic trunk, left common carotid artery and left subclavian and aorta was measured using an automatic angle-forming tool. The decision to use a 15F cannula for ultrasound-guided percutaneous axillary artery cannulation in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) aims to achieve optimal vascular access. This cannula size strikes a balance, providing sufficient blood flow rates for ECMO support while minimizing the risk of complications associated with larger cannulas. Precise measurements of arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries, play a crucial role in guiding catheter selection and determining the depth of axillary artery placement. These measurements allow for tailored approaches based on individual patient characteristics, enhancing the safety and efficacy of the intervention. Additionally, measuring tangential angles (α, β, and γ) provides insights into arterial alignment, optimizing the cannula trajectory for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy, minimizing complications, and ensuring the success of ultrasound-guided percutaneous axillary artery cannulation. In summary, the choice of a 15F cannula and precise measurements are essential components of the methodology, emphasizing safety, efficacy, and personalized approaches in VA-ECMO. From March to June 2022, 7 patients (6 males and 1 female) in our intensive care medicine department underwent successful ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with 15F cannula, including 3 cases with extracorporeal cardiopulmonary resuscitation (ECPR) and 4 cases with circulatory collapse.</p><p><strong>Results: </strong>292 patients met the study criteria, 215 males and 77 females, with a mean age of 67.2±14.2 years. The measurements showed that D1 was (13.1±2.0) mm, D2 was (8.8±2.5) mm, D3 was (6.1±1.2) mm, D4 was (8.3±3.5) mm, D5 was (6.1±1.1) mm, L1 was (114.1±17.8) mm, and L2 was (128.4±20.2) mm. The tangential angles α of the cephalic trunk left common carotid artery and left subclavian artery to the aorta were (43.8°±17.1°), β was (50.7°±14.8°), and γ was (62.4°±19.1°). Males had significantly wider D3 and D5, longer L1 and L2, and smaller gamma angles than females (P < .05). Three ECPR cases showed no recovery of the spontaneous heartbeat with femoral artery cannulation for VA-ECMO but recovered spontaneous heartbeat after axillary artery cannulation for VA-ECMO was adopted. The measurements in this study have important implications for veno-arterial extracorporeal membrane oxygenation (VA-ECMO) procedures. They provide crucial information about arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries. This information guides clinicians in selecting catheters and determining the ideal depth for percutaneous axillary artery cannulation during ECMO interventions. Notable gender differences in arterial dimensions highlight the need for personalized approaches in ECMO procedures. Customizing catheter choices and cannulation depth based on individual patient characteristics, informed by these measurements, improves the safety and effectiveness of the intervention. The measured tangential angles (α, β, and γ) offer insights into arterial alignment, crucial for optimizing cannula trajectory and ensuring proper alignment for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy and minimizing the risk of complications during ECMO procedures. In summary, these measurements directly enhance the precision and safety of VA-ECMO procedures, underscoring the importance of personalized approaches based on individual anatomical variations and improving overall intervention success and outcomes.</p><p><strong>Conclusion: </strong>Ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with a 15F cannula is clinically feasible. Axillary artery cannulation for VA-ECMO contributes to the restoration of spontaneous heartbeat in ECPR patients more than femoral artery cannulation, and the possible mechanism is a better improvement of coronary blood flow. However, the study has limitations, including a modest sample size and a single-center, retrospective design, impacting its generalizability. To validate and extend these findings, further research with larger and diverse cohorts, including prospective investigations, is necessary to ensure their applicability across various clinical settings and patient demographics in VA-ECMO.</p>\",\"PeriodicalId\":7571,\"journal\":{\"name\":\"Alternative therapies in health and medicine\",\"volume\":\" \",\"pages\":\"192-199\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Alternative therapies in health and medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Alternative therapies in health and medicine","FirstCategoryId":"3","ListUrlMain":"","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0

摘要

目的:通过多排螺旋CT血管造影测量左右腋动脉和主动脉弓及其血管,为临床选择导管和腋动脉置管深度提供依据。本研究报告了 7 例成功接受超声引导下经皮腋动脉置管用于静脉-动脉体外膜肺氧合(VA-ECMO)的患者的临床经验:方法:对2020年1月至2022年3月期间在我院接受胸主动脉CT血管造影术的患者进行资格评估,并纳入患者。测量头臂干(D1)、右颈总动脉(D2)、右腋动脉(D3)、左颈总动脉(D4)、左腋动脉开口(D5)、右腋动脉插管长度(L1)和左腋动脉插管长度(L2)的直径。使用自动成角工具测量了头臂干、左颈总动脉、左锁骨下动脉和主动脉的切线角度α、β和γ。在超声引导下经皮腋动脉插管进行静脉-动脉体外膜肺氧合(VA-ECMO)时,决定使用 15F 插管的目的是获得最佳的血管通路。这种插管尺寸实现了一种平衡,既能为 ECMO 支持提供足够的血流量,又能最大限度地降低因插管过大而引起并发症的风险。动脉尺寸的精确测量(包括头干、颈总动脉和腋动脉)在指导导管选择和确定腋动脉置入深度方面起着至关重要的作用。通过这些测量,可以根据患者的个体特征量身定制方法,提高干预的安全性和有效性。此外,通过测量切线角度(α、β 和 γ)可以了解动脉排列情况,从而优化插管轨迹,提高血流效率。使用自动成角工具可提高测量精度,有助于提高手术准确性、减少并发症并确保超声引导下经皮腋动脉插管的成功。总之,选择 15F 插管和精确测量是该方法的重要组成部分,强调了 VA-ECMO 的安全性、有效性和个性化方法。2022年3月至6月,我院重症医学科为7名患者(6男1女)成功实施了超声引导下经皮腋动脉插管15F套管VA-ECMO术,其中3例进行了体外心肺复苏(ECPR),4例出现循环衰竭。测量结果显示,D1为(13.1±2.0)毫米,D2为(8.8±2.5)毫米,D3为(6.1±1.2)毫米,D4为(8.3±3.5)毫米,D5为(6.1±1.1)毫米,L1为(114.1±17.8)毫米,L2为(128.4±20.2)毫米。头干左颈总动脉和左锁骨下动脉与主动脉的切角α为(43.8°±17.1°),β为(50.7°±14.8°),γ为(62.4°±19.1°)。男性的 D3 和 D5 明显比女性宽,L1 和 L2 明显比女性长,γ 角明显比女性小(P < .05)。三例 ECPR 病例在股动脉插管进行 VA-ECMO 时没有恢复自主心跳,但在腋动脉插管进行 VA-ECMO 后恢复了自主心跳。本研究的测量结果对静脉-动脉体外膜肺氧合(VA-ECMO)手术具有重要意义。它们提供了有关动脉尺寸的重要信息,包括头干、颈总动脉和腋动脉。这些信息可指导临床医生在 ECMO 干预过程中选择导管并确定经皮腋动脉插管的理想深度。动脉尺寸的显著性别差异凸显了在 ECMO 手术中采用个性化方法的必要性。根据这些测量结果,根据患者的个体特征定制导管选择和插管深度,可提高干预的安全性和有效性。测量到的切线角度(α、β 和 γ)可帮助了解动脉排列情况,这对优化插管轨迹和确保正确排列以实现高效血流至关重要。自动成角工具的使用提高了测量的精确度,有助于提高程序的准确性,并将 ECMO 程序中出现并发症的风险降至最低。总之,这些测量方法直接提高了 VA-ECMO 手术的精确性和安全性,强调了根据个体解剖差异采用个性化方法的重要性,并提高了整体干预的成功率和效果:结论:使用 15F 插管在超声引导下经皮腋动脉插管进行 VA-ECMO 在临床上是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of Ultrasound-Guided Percutaneous Axillary Artery Cannulation for Veno-Arterial Extracorporeal Membrane Oxygenation and its Effect on the Recovery of Spontaneous Heartbeat in Patients with ECPR.

Objective: The measurement of the right and left axillary arteries and aortic arch and their vessels by multi-row spiral CT angiography provides the basis for clinical catheter selection and depth for axillary artery placement. This study reported the clinical experience of 7 patients who successfully underwent ultrasound-guided percutaneous axillary artery cannulation for veno-arterial extracorporeal membrane oxygenation (VA-ECMO).

Methods: Patients who had CT angiography of the thoracic aorta at our institution between January 2020 and March 2022 were assessed for eligibility and included. The diameters of the cephalic trunk (D1), right common carotid artery (D2), right axillary artery (D3), left common carotid artery (D4), left axillary artery opening (D5), right axillary artery cannulation length (L1), and left axillary artery cannulation length (L2) were measured. The tangential angles α, β, and γ of the cephalic trunk, left common carotid artery and left subclavian and aorta was measured using an automatic angle-forming tool. The decision to use a 15F cannula for ultrasound-guided percutaneous axillary artery cannulation in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) aims to achieve optimal vascular access. This cannula size strikes a balance, providing sufficient blood flow rates for ECMO support while minimizing the risk of complications associated with larger cannulas. Precise measurements of arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries, play a crucial role in guiding catheter selection and determining the depth of axillary artery placement. These measurements allow for tailored approaches based on individual patient characteristics, enhancing the safety and efficacy of the intervention. Additionally, measuring tangential angles (α, β, and γ) provides insights into arterial alignment, optimizing the cannula trajectory for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy, minimizing complications, and ensuring the success of ultrasound-guided percutaneous axillary artery cannulation. In summary, the choice of a 15F cannula and precise measurements are essential components of the methodology, emphasizing safety, efficacy, and personalized approaches in VA-ECMO. From March to June 2022, 7 patients (6 males and 1 female) in our intensive care medicine department underwent successful ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with 15F cannula, including 3 cases with extracorporeal cardiopulmonary resuscitation (ECPR) and 4 cases with circulatory collapse.

Results: 292 patients met the study criteria, 215 males and 77 females, with a mean age of 67.2±14.2 years. The measurements showed that D1 was (13.1±2.0) mm, D2 was (8.8±2.5) mm, D3 was (6.1±1.2) mm, D4 was (8.3±3.5) mm, D5 was (6.1±1.1) mm, L1 was (114.1±17.8) mm, and L2 was (128.4±20.2) mm. The tangential angles α of the cephalic trunk left common carotid artery and left subclavian artery to the aorta were (43.8°±17.1°), β was (50.7°±14.8°), and γ was (62.4°±19.1°). Males had significantly wider D3 and D5, longer L1 and L2, and smaller gamma angles than females (P < .05). Three ECPR cases showed no recovery of the spontaneous heartbeat with femoral artery cannulation for VA-ECMO but recovered spontaneous heartbeat after axillary artery cannulation for VA-ECMO was adopted. The measurements in this study have important implications for veno-arterial extracorporeal membrane oxygenation (VA-ECMO) procedures. They provide crucial information about arterial dimensions, including the cephalic trunk, common carotid arteries, and axillary arteries. This information guides clinicians in selecting catheters and determining the ideal depth for percutaneous axillary artery cannulation during ECMO interventions. Notable gender differences in arterial dimensions highlight the need for personalized approaches in ECMO procedures. Customizing catheter choices and cannulation depth based on individual patient characteristics, informed by these measurements, improves the safety and effectiveness of the intervention. The measured tangential angles (α, β, and γ) offer insights into arterial alignment, crucial for optimizing cannula trajectory and ensuring proper alignment for efficient blood flow. The use of an automatic angle-forming tool enhances measurement precision, contributing to procedural accuracy and minimizing the risk of complications during ECMO procedures. In summary, these measurements directly enhance the precision and safety of VA-ECMO procedures, underscoring the importance of personalized approaches based on individual anatomical variations and improving overall intervention success and outcomes.

Conclusion: Ultrasound-guided percutaneous axillary artery cannulation for VA-ECMO with a 15F cannula is clinically feasible. Axillary artery cannulation for VA-ECMO contributes to the restoration of spontaneous heartbeat in ECPR patients more than femoral artery cannulation, and the possible mechanism is a better improvement of coronary blood flow. However, the study has limitations, including a modest sample size and a single-center, retrospective design, impacting its generalizability. To validate and extend these findings, further research with larger and diverse cohorts, including prospective investigations, is necessary to ensure their applicability across various clinical settings and patient demographics in VA-ECMO.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Alternative therapies in health and medicine
Alternative therapies in health and medicine INTEGRATIVE & COMPLEMENTARY MEDICINE-
CiteScore
0.90
自引率
0.00%
发文量
219
期刊介绍: Launched in 1995, Alternative Therapies in Health and Medicine has a mission to promote the art and science of integrative medicine and a responsibility to improve public health. We strive to maintain the highest standards of ethical medical journalism independent of special interests that is timely, accurate, and a pleasure to read. We publish original, peer-reviewed scientific articles that provide health care providers with continuing education to promote health, prevent illness, and treat disease. Alternative Therapies in Health and Medicine was the first journal in this field to be indexed in the National Library of Medicine. In 2006, 2007, and 2008, ATHM had the highest impact factor ranking of any independently published peer-reviewed CAM journal in the United States—meaning that its research articles were cited more frequently than any other journal’s in the field. Alternative Therapies in Health and Medicine does not endorse any particular system or method but promotes the evaluation and appropriate use of all effective therapeutic approaches. Each issue contains a variety of disciplined inquiry methods, from case reports to original scientific research to systematic reviews. The editors encourage the integration of evidence-based emerging therapies with conventional medical practices by licensed health care providers in a way that promotes a comprehensive approach to health care that is focused on wellness, prevention, and healing. Alternative Therapies in Health and Medicine hopes to inform all licensed health care practitioners about developments in fields other than their own and to foster an ongoing debate about the scientific, clinical, historical, legal, political, and cultural issues that affect all of health care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信