雾化器

IF 2 4区 医学 Q3 RESPIRATORY SYSTEM
James B Fink, Kevin W Stapleton
{"title":"雾化器","authors":"James B Fink, Kevin W Stapleton","doi":"10.1089/jamp.2024.29110.jbf","DOIUrl":null,"url":null,"abstract":"<p><p>Nebulizers generate aerosols from liquid-based solutions and suspensions. Nebulizers are particularly well suited to delivering larger doses of medication than is practical with inhalers and are used with a broad range of liquid formulations. When the same drug is available in liquid or inhaler form, nebulizers are applicable for use with patients who will not or cannot reliably use a pressurized metered-dosed inhaler (pMDI) or dry powder inhaler (DPI) due to poor lung function, hand-breath coordination, cognitive abilities (e.g., infants, elderly) or device preference. In a nebulizer, liquid medication is placed in a reservoir and fed to an aerosol generator to produce the droplets. A series of tubes and channels direct the aerosol to the patient via an interface such as mouthpiece, mask, tent, nasal prongs or artificial airway. All nebulizers contain these basic parts, although the technology and design used can vary widely and can result in significant difference in ergonomics, directions for use, and performance. While many types of nebulizers have been described, the three categories of modern clinical nebulizers include: (1) pneumatic jet nebulizers (JN); (2) ultrasonic nebulizers (USN); and (3) vibrating mesh nebulizers (VMN). Nebulizers are also described in terms of their reservoir size. Small volume nebulizers (SVNs), most commonly used for medical aerosol therapy, can hold 5 to 20 mL of medication and may be jet, ultrasonic, or mesh nebulizers. Large volume nebulizers, typically jet or ultrasonic nebulizers, hold up to 200 mL and may be used for either bland aerosol therapy or continuous drug administration.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nebulizers.\",\"authors\":\"James B Fink, Kevin W Stapleton\",\"doi\":\"10.1089/jamp.2024.29110.jbf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nebulizers generate aerosols from liquid-based solutions and suspensions. Nebulizers are particularly well suited to delivering larger doses of medication than is practical with inhalers and are used with a broad range of liquid formulations. When the same drug is available in liquid or inhaler form, nebulizers are applicable for use with patients who will not or cannot reliably use a pressurized metered-dosed inhaler (pMDI) or dry powder inhaler (DPI) due to poor lung function, hand-breath coordination, cognitive abilities (e.g., infants, elderly) or device preference. In a nebulizer, liquid medication is placed in a reservoir and fed to an aerosol generator to produce the droplets. A series of tubes and channels direct the aerosol to the patient via an interface such as mouthpiece, mask, tent, nasal prongs or artificial airway. All nebulizers contain these basic parts, although the technology and design used can vary widely and can result in significant difference in ergonomics, directions for use, and performance. While many types of nebulizers have been described, the three categories of modern clinical nebulizers include: (1) pneumatic jet nebulizers (JN); (2) ultrasonic nebulizers (USN); and (3) vibrating mesh nebulizers (VMN). Nebulizers are also described in terms of their reservoir size. Small volume nebulizers (SVNs), most commonly used for medical aerosol therapy, can hold 5 to 20 mL of medication and may be jet, ultrasonic, or mesh nebulizers. Large volume nebulizers, typically jet or ultrasonic nebulizers, hold up to 200 mL and may be used for either bland aerosol therapy or continuous drug administration.</p>\",\"PeriodicalId\":14940,\"journal\":{\"name\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Aerosol Medicine and Pulmonary Drug Delivery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/jamp.2024.29110.jbf\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2024.29110.jbf","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/29 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0

摘要

雾化器从液态溶液和悬浮液中产生气溶胶。与吸入器相比,雾化器特别适用于提供更大剂量的药物,并可用于多种液体配方。当同一种药物有液体或吸入剂形式时,雾化器适用于因肺功能差、手呼气协调能力差、认知能力差(如婴儿、老人)或偏好设备而不会或不能可靠使用加压计量吸入器(pMDI)或干粉吸入器(DPI)的患者。在雾化器中,液体药物被置于储液器中,然后送入气溶胶发生器以产生雾滴。一系列管道和通道通过口罩、面罩、帐篷、鼻锥或人工气道等接口将气溶胶导入患者体内。所有雾化器都包含这些基本部件,但所采用的技术和设计可能会有很大差异,并可能导致人体工程学、使用指南和性能方面的显著不同。虽然已经描述了许多类型的雾化器,但现代临床雾化器包括以下三类:(1) 气动喷射雾化器 (JN);(2) 超声波雾化器 (USN);(3) 振动网式雾化器 (VMN)。雾化器还可根据其储气罐的大小进行描述。小容量雾化器(SVN)最常用于医用气雾疗法,可容纳 5 到 20 毫升药物,可以是喷射式、超声波式或网式雾化器。大容量雾化器通常是喷射式或超声波雾化器,可容纳多达 200 毫升的药物,可用于平淡的气溶胶疗法或持续给药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nebulizers.

Nebulizers generate aerosols from liquid-based solutions and suspensions. Nebulizers are particularly well suited to delivering larger doses of medication than is practical with inhalers and are used with a broad range of liquid formulations. When the same drug is available in liquid or inhaler form, nebulizers are applicable for use with patients who will not or cannot reliably use a pressurized metered-dosed inhaler (pMDI) or dry powder inhaler (DPI) due to poor lung function, hand-breath coordination, cognitive abilities (e.g., infants, elderly) or device preference. In a nebulizer, liquid medication is placed in a reservoir and fed to an aerosol generator to produce the droplets. A series of tubes and channels direct the aerosol to the patient via an interface such as mouthpiece, mask, tent, nasal prongs or artificial airway. All nebulizers contain these basic parts, although the technology and design used can vary widely and can result in significant difference in ergonomics, directions for use, and performance. While many types of nebulizers have been described, the three categories of modern clinical nebulizers include: (1) pneumatic jet nebulizers (JN); (2) ultrasonic nebulizers (USN); and (3) vibrating mesh nebulizers (VMN). Nebulizers are also described in terms of their reservoir size. Small volume nebulizers (SVNs), most commonly used for medical aerosol therapy, can hold 5 to 20 mL of medication and may be jet, ultrasonic, or mesh nebulizers. Large volume nebulizers, typically jet or ultrasonic nebulizers, hold up to 200 mL and may be used for either bland aerosol therapy or continuous drug administration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
2.90%
发文量
34
审稿时长
>12 weeks
期刊介绍: Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient. Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes: Pulmonary drug delivery Airway reactivity and asthma treatment Inhalation of particles and gases in the respiratory tract Toxic effects of inhaled agents Aerosols as tools for studying basic physiologic phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信