通过基于 RSM 的优化,最大限度地提高柱式生物反应器中尿酸酶的产量。

IF 8.2 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Mohammad Hossein Taghizadeh, Khosro Khajeh, Niloofar Nasirpour, Seyyed Mohammad Mousavi
{"title":"通过基于 RSM 的优化,最大限度地提高柱式生物反应器中尿酸酶的产量。","authors":"Mohammad Hossein Taghizadeh, Khosro Khajeh, Niloofar Nasirpour, Seyyed Mohammad Mousavi","doi":"10.1088/1758-5090/ad467f","DOIUrl":null,"url":null,"abstract":"<p><p>Uricase (EC 1.7.3.3) is an oxidoreductase enzyme that is widely exploited for diagnostic and treatment purposes in medicine. This study focuses on producing recombinant uricase from<i>E. coli</i>BL21 in a bubble column bioreactor (BCB) and finding the optimal conditions for maximum uricase activity. The three most effective variables on uricase activity were selected through the Plackett-Burman design from eight different variables and were further optimized by the central composite design of the response surface methodology (RSM). The selected variables included the inoculum size (%v/v), isopropyl<i>β-d</i>-1-thiogalactopyranoside (IPTG) concentration (mM) and the initial pH of the culture medium. The activity of uricase, the final optical density at 600 nm wavelength (OD<sub>600</sub>) and the final pH were considered as the responses of this optimization and were modeled. As a result, activity of 5.84 U·ml<sup>-1</sup>and a final OD<sub>600</sub>of 3.42 were obtained at optimum conditions of 3% v/v inoculum size, an IPTG concentration of 0.54 mM and a pH of 6.0. By purifying the obtained enzyme using a Ni-NTA agarose affinity chromatography column, 165 ± 1.5 mg uricase was obtained from a 600 ml cell culture. The results of this study show that BCBs can be a highly effective option for large-scale uricase production.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximization of uricase production in a column bioreactor through response surface methodology-based optimization.\",\"authors\":\"Mohammad Hossein Taghizadeh, Khosro Khajeh, Niloofar Nasirpour, Seyyed Mohammad Mousavi\",\"doi\":\"10.1088/1758-5090/ad467f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Uricase (EC 1.7.3.3) is an oxidoreductase enzyme that is widely exploited for diagnostic and treatment purposes in medicine. This study focuses on producing recombinant uricase from<i>E. coli</i>BL21 in a bubble column bioreactor (BCB) and finding the optimal conditions for maximum uricase activity. The three most effective variables on uricase activity were selected through the Plackett-Burman design from eight different variables and were further optimized by the central composite design of the response surface methodology (RSM). The selected variables included the inoculum size (%v/v), isopropyl<i>β-d</i>-1-thiogalactopyranoside (IPTG) concentration (mM) and the initial pH of the culture medium. The activity of uricase, the final optical density at 600 nm wavelength (OD<sub>600</sub>) and the final pH were considered as the responses of this optimization and were modeled. As a result, activity of 5.84 U·ml<sup>-1</sup>and a final OD<sub>600</sub>of 3.42 were obtained at optimum conditions of 3% v/v inoculum size, an IPTG concentration of 0.54 mM and a pH of 6.0. By purifying the obtained enzyme using a Ni-NTA agarose affinity chromatography column, 165 ± 1.5 mg uricase was obtained from a 600 ml cell culture. The results of this study show that BCBs can be a highly effective option for large-scale uricase production.</p>\",\"PeriodicalId\":8964,\"journal\":{\"name\":\"Biofabrication\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofabrication\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1758-5090/ad467f\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad467f","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

尿酸酶(EC 1.7.3.3)是一种氧化还原酶,被广泛用于医学诊断和治疗。本研究的重点是在气泡柱生物反应器(BCB)中从大肠杆菌 BL21 中生产重组尿酸酶,并找到使尿酸酶活性最大化的最佳条件。通过 Plackett-Burman 设计,从 8 个不同变量中选出了对尿酸酶活性最有效的三个变量,并通过 RSM 的中心复合设计进行了进一步优化。所选变量包括接种物大小(%v/v)、IPTG(异丙基β-d-1-硫代半乳糖苷)浓度(mM)和培养基初始 pH 值。尿酸酶活性、最终 OD600(600 纳米波长下的光密度)和最终 pH 值被视为此次优化的响应,并建立了模型。结果,在接种物大小为 3 %v/v、IPTG 浓度为 0.54 mM、pH=6.0 的最佳条件下,获得了 5.84 U.ml-1 的活性和 3.42 的最终 OD600。通过使用 Ni-NTA 琼脂糖亲和层析柱纯化所获得的酶,从 600 mL 细胞培养物中获得了 165±1.5 mg 尿酸酶。这项研究的结果表明,气泡柱生物反应器是大规模生产尿酸酶的一种高效选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximization of uricase production in a column bioreactor through response surface methodology-based optimization.

Uricase (EC 1.7.3.3) is an oxidoreductase enzyme that is widely exploited for diagnostic and treatment purposes in medicine. This study focuses on producing recombinant uricase fromE. coliBL21 in a bubble column bioreactor (BCB) and finding the optimal conditions for maximum uricase activity. The three most effective variables on uricase activity were selected through the Plackett-Burman design from eight different variables and were further optimized by the central composite design of the response surface methodology (RSM). The selected variables included the inoculum size (%v/v), isopropylβ-d-1-thiogalactopyranoside (IPTG) concentration (mM) and the initial pH of the culture medium. The activity of uricase, the final optical density at 600 nm wavelength (OD600) and the final pH were considered as the responses of this optimization and were modeled. As a result, activity of 5.84 U·ml-1and a final OD600of 3.42 were obtained at optimum conditions of 3% v/v inoculum size, an IPTG concentration of 0.54 mM and a pH of 6.0. By purifying the obtained enzyme using a Ni-NTA agarose affinity chromatography column, 165 ± 1.5 mg uricase was obtained from a 600 ml cell culture. The results of this study show that BCBs can be a highly effective option for large-scale uricase production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biofabrication
Biofabrication ENGINEERING, BIOMEDICAL-MATERIALS SCIENCE, BIOMATERIALS
CiteScore
17.40
自引率
3.30%
发文量
118
审稿时长
2 months
期刊介绍: Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信