{"title":"KbhbXG:基于 XGBoost 的机器学习架构,用于预测赖氨酸 β-羟基丁酰化(Kbhb)修饰位点。","authors":"Leqi Chen , Liwen Liu , Haiyan Su , Yan Xu","doi":"10.1016/j.ymeth.2024.04.016","DOIUrl":null,"url":null,"abstract":"<div><p>Lysine β-hydroxybutyrylation is an important post-translational modification (PTM) involved in various physiological and biological processes. In this research, we introduce a novel predictor KbhbXG, which utilizes XGBoost to identify β-hydroxybutyrylation modification sites based on protein sequence information. The traditional experimental methods employed for the identification of β-hydroxybutyrylated sites using proteomic techniques are both costly and time-consuming. Thus, the development of computational methods and predictors can play a crucial role in facilitating the rapid identification of β-hydroxybutyrylation sites. Our proposed KbhbXG model first utilizes machine learning algorithm XGBoost to predict β-hydroxybutyrylation modification sites. On the independent test set, KbhbXG achieves an accuracy of 0.7457, specificity of 0.7771, and an impressive area under the curve (AUC) score of 0.8172. The high AUC score achieved by our method demonstrates its potential for effectively identifying novel β-hydroxybutyrylation sites, thereby facilitating further research and exploration of the β-hydroxybutyrylation process. Also, functional analyses have revealed that different organisms preferentially engage in distinct biological processes and pathways, which can provide valuable insights for understanding the mechanism of β-hydroxybutyrylation and guide experimental verification. To promote transparency and reproducibility, we have made both the codes and dataset of KbhbXG publicly available. Researchers interested in utilizing our proposed model can access these resources at <span>https://github.com/Lab-Xu/KbhbXG</span><svg><path></path></svg>.</p></div>","PeriodicalId":390,"journal":{"name":"Methods","volume":"227 ","pages":"Pages 27-34"},"PeriodicalIF":4.2000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites\",\"authors\":\"Leqi Chen , Liwen Liu , Haiyan Su , Yan Xu\",\"doi\":\"10.1016/j.ymeth.2024.04.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lysine β-hydroxybutyrylation is an important post-translational modification (PTM) involved in various physiological and biological processes. In this research, we introduce a novel predictor KbhbXG, which utilizes XGBoost to identify β-hydroxybutyrylation modification sites based on protein sequence information. The traditional experimental methods employed for the identification of β-hydroxybutyrylated sites using proteomic techniques are both costly and time-consuming. Thus, the development of computational methods and predictors can play a crucial role in facilitating the rapid identification of β-hydroxybutyrylation sites. Our proposed KbhbXG model first utilizes machine learning algorithm XGBoost to predict β-hydroxybutyrylation modification sites. On the independent test set, KbhbXG achieves an accuracy of 0.7457, specificity of 0.7771, and an impressive area under the curve (AUC) score of 0.8172. The high AUC score achieved by our method demonstrates its potential for effectively identifying novel β-hydroxybutyrylation sites, thereby facilitating further research and exploration of the β-hydroxybutyrylation process. Also, functional analyses have revealed that different organisms preferentially engage in distinct biological processes and pathways, which can provide valuable insights for understanding the mechanism of β-hydroxybutyrylation and guide experimental verification. To promote transparency and reproducibility, we have made both the codes and dataset of KbhbXG publicly available. Researchers interested in utilizing our proposed model can access these resources at <span>https://github.com/Lab-Xu/KbhbXG</span><svg><path></path></svg>.</p></div>\",\"PeriodicalId\":390,\"journal\":{\"name\":\"Methods\",\"volume\":\"227 \",\"pages\":\"Pages 27-34\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1046202324001063\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1046202324001063","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
KbhbXG: A Machine learning architecture based on XGBoost for prediction of lysine β-Hydroxybutyrylation (Kbhb) modification sites
Lysine β-hydroxybutyrylation is an important post-translational modification (PTM) involved in various physiological and biological processes. In this research, we introduce a novel predictor KbhbXG, which utilizes XGBoost to identify β-hydroxybutyrylation modification sites based on protein sequence information. The traditional experimental methods employed for the identification of β-hydroxybutyrylated sites using proteomic techniques are both costly and time-consuming. Thus, the development of computational methods and predictors can play a crucial role in facilitating the rapid identification of β-hydroxybutyrylation sites. Our proposed KbhbXG model first utilizes machine learning algorithm XGBoost to predict β-hydroxybutyrylation modification sites. On the independent test set, KbhbXG achieves an accuracy of 0.7457, specificity of 0.7771, and an impressive area under the curve (AUC) score of 0.8172. The high AUC score achieved by our method demonstrates its potential for effectively identifying novel β-hydroxybutyrylation sites, thereby facilitating further research and exploration of the β-hydroxybutyrylation process. Also, functional analyses have revealed that different organisms preferentially engage in distinct biological processes and pathways, which can provide valuable insights for understanding the mechanism of β-hydroxybutyrylation and guide experimental verification. To promote transparency and reproducibility, we have made both the codes and dataset of KbhbXG publicly available. Researchers interested in utilizing our proposed model can access these resources at https://github.com/Lab-Xu/KbhbXG.
期刊介绍:
Methods focuses on rapidly developing techniques in the experimental biological and medical sciences.
Each topical issue, organized by a guest editor who is an expert in the area covered, consists solely of invited quality articles by specialist authors, many of them reviews. Issues are devoted to specific technical approaches with emphasis on clear detailed descriptions of protocols that allow them to be reproduced easily. The background information provided enables researchers to understand the principles underlying the methods; other helpful sections include comparisons of alternative methods giving the advantages and disadvantages of particular methods, guidance on avoiding potential pitfalls, and suggestions for troubleshooting.