E Torres-Maravilla, F A Carvalho, S Holowacz, J Delannoy, L Lenoir, E Jacouton, F Barbut, P Langella, L G Bermúdez-Humarán, A-J Waligora-Dupriet
{"title":"利用体外和体内方法筛选益生菌株,以改善肠易激综合征的内脏超敏反应。","authors":"E Torres-Maravilla, F A Carvalho, S Holowacz, J Delannoy, L Lenoir, E Jacouton, F Barbut, P Langella, L G Bermúdez-Humarán, A-J Waligora-Dupriet","doi":"10.1163/18762891-bja00006","DOIUrl":null,"url":null,"abstract":"<p><p>Oral administration of probiotics has been proposed as a promising biotherapy to prevent and treat different diseases related to gastrointestinal disorders, such as irritable bowel syndrome (IBS). Due to the increasing research area on the characterisation of new probiotic bacterial strains, it is necessary to perform suitable in vitro experiments, using pertinent cellular models, in order to establish appropriate readout profiles based on IBS symptoms and subtypes. In this work, a collection of 30 candidate strains, belonging mainly to the Lactobacillus and Bifidobacterium genera, were screened using three different sets of in vitro experiments with different readouts to identify promising probiotic strains with: (1) the ability to inhibit the synthesis of IL-8 production by TNF-α stimulated HT-29 cells, (2) immunomodulatory properties quantified as increased IL-10 levels in peripheral blood mononuclear cell (PBMCs), and (3) the ability to maintain epithelial barrier integrity by increasing the trans-epithelial/endothelial electrical resistance (TEER) values in Caco-2 cells. Based on these criteria, three strains were selected: Lactobacillus gasseri PI41, Lacticaseibacillus rhamnosus PI48 and Bifidobacterium animalis subsp. lactis PI50, and tested in a murine model of low-grade inflammation induced by dinitrobenzene sulfonic acid (DNBS), which mimics some of the symptoms of IBS. Among the three strains, L. gasseri PI41 improved overall host well-being by preventing body weight loss in DNBS-treated mice and restored gut homeostasis by normalising the intestinal permeability and reducing pro-inflammatory markers. Therefore, the potential of this strain was confirmed in a second murine model known to reproduce IBS symptoms: the neonatal maternal separation (NMS) model. The PI41 strain was effective in preventing intestinal permeability and reducing colonic hypersensitivity. In conclusion, the set of in vitro experiments combined with in vivo assessments allowed us to identify a promising probiotic candidate strain, L. gasseri PI41, in the context of IBS.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"293-310"},"PeriodicalIF":3.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Screening of probiotic strains to improve visceral hypersensitivity in irritable bowel syndrome by using in vitro and in vivo approaches.\",\"authors\":\"E Torres-Maravilla, F A Carvalho, S Holowacz, J Delannoy, L Lenoir, E Jacouton, F Barbut, P Langella, L G Bermúdez-Humarán, A-J Waligora-Dupriet\",\"doi\":\"10.1163/18762891-bja00006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oral administration of probiotics has been proposed as a promising biotherapy to prevent and treat different diseases related to gastrointestinal disorders, such as irritable bowel syndrome (IBS). Due to the increasing research area on the characterisation of new probiotic bacterial strains, it is necessary to perform suitable in vitro experiments, using pertinent cellular models, in order to establish appropriate readout profiles based on IBS symptoms and subtypes. In this work, a collection of 30 candidate strains, belonging mainly to the Lactobacillus and Bifidobacterium genera, were screened using three different sets of in vitro experiments with different readouts to identify promising probiotic strains with: (1) the ability to inhibit the synthesis of IL-8 production by TNF-α stimulated HT-29 cells, (2) immunomodulatory properties quantified as increased IL-10 levels in peripheral blood mononuclear cell (PBMCs), and (3) the ability to maintain epithelial barrier integrity by increasing the trans-epithelial/endothelial electrical resistance (TEER) values in Caco-2 cells. Based on these criteria, three strains were selected: Lactobacillus gasseri PI41, Lacticaseibacillus rhamnosus PI48 and Bifidobacterium animalis subsp. lactis PI50, and tested in a murine model of low-grade inflammation induced by dinitrobenzene sulfonic acid (DNBS), which mimics some of the symptoms of IBS. Among the three strains, L. gasseri PI41 improved overall host well-being by preventing body weight loss in DNBS-treated mice and restored gut homeostasis by normalising the intestinal permeability and reducing pro-inflammatory markers. Therefore, the potential of this strain was confirmed in a second murine model known to reproduce IBS symptoms: the neonatal maternal separation (NMS) model. The PI41 strain was effective in preventing intestinal permeability and reducing colonic hypersensitivity. In conclusion, the set of in vitro experiments combined with in vivo assessments allowed us to identify a promising probiotic candidate strain, L. gasseri PI41, in the context of IBS.</p>\",\"PeriodicalId\":8834,\"journal\":{\"name\":\"Beneficial microbes\",\"volume\":\" \",\"pages\":\"293-310\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Beneficial microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1163/18762891-bja00006\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00006","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Screening of probiotic strains to improve visceral hypersensitivity in irritable bowel syndrome by using in vitro and in vivo approaches.
Oral administration of probiotics has been proposed as a promising biotherapy to prevent and treat different diseases related to gastrointestinal disorders, such as irritable bowel syndrome (IBS). Due to the increasing research area on the characterisation of new probiotic bacterial strains, it is necessary to perform suitable in vitro experiments, using pertinent cellular models, in order to establish appropriate readout profiles based on IBS symptoms and subtypes. In this work, a collection of 30 candidate strains, belonging mainly to the Lactobacillus and Bifidobacterium genera, were screened using three different sets of in vitro experiments with different readouts to identify promising probiotic strains with: (1) the ability to inhibit the synthesis of IL-8 production by TNF-α stimulated HT-29 cells, (2) immunomodulatory properties quantified as increased IL-10 levels in peripheral blood mononuclear cell (PBMCs), and (3) the ability to maintain epithelial barrier integrity by increasing the trans-epithelial/endothelial electrical resistance (TEER) values in Caco-2 cells. Based on these criteria, three strains were selected: Lactobacillus gasseri PI41, Lacticaseibacillus rhamnosus PI48 and Bifidobacterium animalis subsp. lactis PI50, and tested in a murine model of low-grade inflammation induced by dinitrobenzene sulfonic acid (DNBS), which mimics some of the symptoms of IBS. Among the three strains, L. gasseri PI41 improved overall host well-being by preventing body weight loss in DNBS-treated mice and restored gut homeostasis by normalising the intestinal permeability and reducing pro-inflammatory markers. Therefore, the potential of this strain was confirmed in a second murine model known to reproduce IBS symptoms: the neonatal maternal separation (NMS) model. The PI41 strain was effective in preventing intestinal permeability and reducing colonic hypersensitivity. In conclusion, the set of in vitro experiments combined with in vivo assessments allowed us to identify a promising probiotic candidate strain, L. gasseri PI41, in the context of IBS.
期刊介绍:
Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators.
The journal will have five major sections:
* Food, nutrition and health
* Animal nutrition
* Processing and application
* Regulatory & safety aspects
* Medical & health applications
In these sections, topics dealt with by Beneficial Microbes include:
* Worldwide safety and regulatory issues
* Human and animal nutrition and health effects
* Latest discoveries in mechanistic studies and screening methods to unravel mode of action
* Host physiology related to allergy, inflammation, obesity, etc.
* Trends in application of (meta)genomics, proteomics and metabolomics
* New developments in how processing optimizes pro- & prebiotics for application
* Bacterial physiology related to health benefits