多功能氨基衍生物荧光探针在食品、环境和微环境中的应用研究进展。

IF 4.2 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Xiaoming Wu, Ning Duan, Shaoxiang Yang
{"title":"多功能氨基衍生物荧光探针在食品、环境和微环境中的应用研究进展。","authors":"Xiaoming Wu, Ning Duan, Shaoxiang Yang","doi":"10.1080/10408347.2024.2343848","DOIUrl":null,"url":null,"abstract":"<p><p>The amino group is regarded as a multifunctional recognition group in fluorescent probes. It is nucleophilic, a strong electron-donating group and is a polar group with active hydrogen. Based on these characteristics, amino-based fluorescent probes combined with various fluorescent precursors have been constructed, with excellent sensing performance and low cytotoxicity. These probes have significant application value in the detection of food, living cells and organisms. Here, the relevant studies on amino fluorescent probes from 2016 to 2024 are systematically reviewed and their molecular design principles, recognition mechanisms and applications are described. These studies included 14 on exogenous and endogenous formaldehyde detection, five that detected polarity changes in the external environment and organelles <i>in vivo</i>, four intracellular mitochondrial and lysosomal viscosity detections, seven physiological environment and intracellular pH detections, seven metal ion detections in biological and environmental systems and four rapid detections of the hypochlorite anion (ClO<sup>-</sup>) in a variety of physiological processes and cells. The application scope of amino fluorescent probes is constantly expanding at present but, research progress in multiple application fields has not been summarized. This article mainly reviews the latest progress in amino fluorescent probes in the fields of food, the environment and the microenvironment, as well as looking forward to the development prospects of these fluorescent probes. Improving the reactivity of amino recognition groups and visual detection may become hot issues in future research.</p>","PeriodicalId":10744,"journal":{"name":"Critical reviews in analytical chemistry","volume":" ","pages":"1-18"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research Progress on the Application of Multifunctional Amino Derivative Fluorescent Probes in Food, the Environment, and the Microenvironment.\",\"authors\":\"Xiaoming Wu, Ning Duan, Shaoxiang Yang\",\"doi\":\"10.1080/10408347.2024.2343848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The amino group is regarded as a multifunctional recognition group in fluorescent probes. It is nucleophilic, a strong electron-donating group and is a polar group with active hydrogen. Based on these characteristics, amino-based fluorescent probes combined with various fluorescent precursors have been constructed, with excellent sensing performance and low cytotoxicity. These probes have significant application value in the detection of food, living cells and organisms. Here, the relevant studies on amino fluorescent probes from 2016 to 2024 are systematically reviewed and their molecular design principles, recognition mechanisms and applications are described. These studies included 14 on exogenous and endogenous formaldehyde detection, five that detected polarity changes in the external environment and organelles <i>in vivo</i>, four intracellular mitochondrial and lysosomal viscosity detections, seven physiological environment and intracellular pH detections, seven metal ion detections in biological and environmental systems and four rapid detections of the hypochlorite anion (ClO<sup>-</sup>) in a variety of physiological processes and cells. The application scope of amino fluorescent probes is constantly expanding at present but, research progress in multiple application fields has not been summarized. This article mainly reviews the latest progress in amino fluorescent probes in the fields of food, the environment and the microenvironment, as well as looking forward to the development prospects of these fluorescent probes. Improving the reactivity of amino recognition groups and visual detection may become hot issues in future research.</p>\",\"PeriodicalId\":10744,\"journal\":{\"name\":\"Critical reviews in analytical chemistry\",\"volume\":\" \",\"pages\":\"1-18\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical reviews in analytical chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1080/10408347.2024.2343848\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical reviews in analytical chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/10408347.2024.2343848","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

氨基被视为荧光探针中的多功能识别基团。它具有亲核性,是一个强电子供体,并且是一个带有活性氢的极性基团。基于这些特点,人们构建了与各种荧光前体相结合的氨基荧光探针,这些探针具有优异的传感性能和较低的细胞毒性。这些探针在食品、活细胞和生物体的检测中具有重要的应用价值。在此,系统回顾了2016年至2024年关于氨基荧光探针的相关研究,并对其分子设计原理、识别机制和应用进行了阐述。这些研究包括14项关于外源性和内源性甲醛检测的研究,5项检测体内外环境和细胞器极性变化的研究,4项细胞内线粒体和溶酶体粘度检测的研究,7项生理环境和细胞内pH检测的研究,7项生物和环境系统中金属离子检测的研究,以及4项快速检测各种生理过程和细胞中次氯酸阴离子(ClO-)的研究。目前,氨基荧光探针的应用范围在不断扩大,但在多个应用领域的研究进展尚未得到总结。本文主要综述了氨基荧光探针在食品、环境和微环境领域的最新研究进展,并展望了这些荧光探针的发展前景。提高氨基识别基团的反应活性和可视化检测可能成为未来研究的热点问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research Progress on the Application of Multifunctional Amino Derivative Fluorescent Probes in Food, the Environment, and the Microenvironment.

The amino group is regarded as a multifunctional recognition group in fluorescent probes. It is nucleophilic, a strong electron-donating group and is a polar group with active hydrogen. Based on these characteristics, amino-based fluorescent probes combined with various fluorescent precursors have been constructed, with excellent sensing performance and low cytotoxicity. These probes have significant application value in the detection of food, living cells and organisms. Here, the relevant studies on amino fluorescent probes from 2016 to 2024 are systematically reviewed and their molecular design principles, recognition mechanisms and applications are described. These studies included 14 on exogenous and endogenous formaldehyde detection, five that detected polarity changes in the external environment and organelles in vivo, four intracellular mitochondrial and lysosomal viscosity detections, seven physiological environment and intracellular pH detections, seven metal ion detections in biological and environmental systems and four rapid detections of the hypochlorite anion (ClO-) in a variety of physiological processes and cells. The application scope of amino fluorescent probes is constantly expanding at present but, research progress in multiple application fields has not been summarized. This article mainly reviews the latest progress in amino fluorescent probes in the fields of food, the environment and the microenvironment, as well as looking forward to the development prospects of these fluorescent probes. Improving the reactivity of amino recognition groups and visual detection may become hot issues in future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
4.00%
发文量
137
审稿时长
6 months
期刊介绍: Critical Reviews in Analytical Chemistry continues to be a dependable resource for both the expert and the student by providing in-depth, scholarly, insightful reviews of important topics within the discipline of analytical chemistry and related measurement sciences. The journal exclusively publishes review articles that illuminate the underlying science, that evaluate the field''s status by putting recent developments into proper perspective and context, and that speculate on possible future developments. A limited number of articles are of a "tutorial" format written by experts for scientists seeking introduction or clarification in a new area. This journal serves as a forum for linking various underlying components in broad and interdisciplinary means, while maintaining balance between applied and fundamental research. Topics we are interested in receiving reviews on are the following: · chemical analysis; · instrumentation; · chemometrics; · analytical biochemistry; · medicinal analysis; · forensics; · environmental sciences; · applied physics; · and material science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信