Shanfeng Li, Long Zhou, Feng Zhao, Haisong Wang, Meng Sun
{"title":"三唑通过上调 p38 磷酸化及靶向激活 p-ERK1/2 和 Akt 蛋白表达抑制肝癌细胞活力","authors":"Shanfeng Li, Long Zhou, Feng Zhao, Haisong Wang, Meng Sun","doi":"10.1134/S1607672923600525","DOIUrl":null,"url":null,"abstract":"<p>The present study was aimed to explore the effect of triazole on growth and viability of liver cancer cells. Cell growth was examined using the MTT test and expression of several proteins was assessed by western blotting assay. The Matrigel-coated Transwell assay was employed to examine the infiltration of cells. The data from MTT assay showed that MHCC97H and H4TG liver cancer cell viability was inhibited by triazole in a concentration-dependent manner. After treatment with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole, the rate of H4TG cell viability was decreased to 96, 73, 58, 39, 29, and 28%, respectively. Treatment of MHCC97H cells with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole resulted in a reduction in cell viability to 94, 70, 53, 35, 22, and 21%, respectively. Triazole treatment also led to a significant reduction in MHCC97H cell invasiveness compared to the control cells. In MHCC97H cells treated with triazole, there was a noticeable decrease in the levels of p-ERK1/2, and p-Akt protein expression. Treatment of MHCC97H cells with triazole resulted in a prominent increase in p-p38 level. In summary, triazole inhibits growth and viability of liver cancer cells through targeting the activation of p-ERK1/2 and Akt proteins. Therefore, triazole may be investigated further as a therapeutic agent for the treatment of liver cancer.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":"516 1","pages":"66 - 72"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inhibition of Liver Cancer Cell Viability by Triazole through Up-regulation of p38 Phosphorylation and Targeting the Activation of p-ERK1/2 and Akt Protein Expression\",\"authors\":\"Shanfeng Li, Long Zhou, Feng Zhao, Haisong Wang, Meng Sun\",\"doi\":\"10.1134/S1607672923600525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present study was aimed to explore the effect of triazole on growth and viability of liver cancer cells. Cell growth was examined using the MTT test and expression of several proteins was assessed by western blotting assay. The Matrigel-coated Transwell assay was employed to examine the infiltration of cells. The data from MTT assay showed that MHCC97H and H4TG liver cancer cell viability was inhibited by triazole in a concentration-dependent manner. After treatment with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole, the rate of H4TG cell viability was decreased to 96, 73, 58, 39, 29, and 28%, respectively. Treatment of MHCC97H cells with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole resulted in a reduction in cell viability to 94, 70, 53, 35, 22, and 21%, respectively. Triazole treatment also led to a significant reduction in MHCC97H cell invasiveness compared to the control cells. In MHCC97H cells treated with triazole, there was a noticeable decrease in the levels of p-ERK1/2, and p-Akt protein expression. Treatment of MHCC97H cells with triazole resulted in a prominent increase in p-p38 level. In summary, triazole inhibits growth and viability of liver cancer cells through targeting the activation of p-ERK1/2 and Akt proteins. Therefore, triazole may be investigated further as a therapeutic agent for the treatment of liver cancer.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\"516 1\",\"pages\":\"66 - 72\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1607672923600525\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672923600525","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Inhibition of Liver Cancer Cell Viability by Triazole through Up-regulation of p38 Phosphorylation and Targeting the Activation of p-ERK1/2 and Akt Protein Expression
The present study was aimed to explore the effect of triazole on growth and viability of liver cancer cells. Cell growth was examined using the MTT test and expression of several proteins was assessed by western blotting assay. The Matrigel-coated Transwell assay was employed to examine the infiltration of cells. The data from MTT assay showed that MHCC97H and H4TG liver cancer cell viability was inhibited by triazole in a concentration-dependent manner. After treatment with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole, the rate of H4TG cell viability was decreased to 96, 73, 58, 39, 29, and 28%, respectively. Treatment of MHCC97H cells with 0.5, 1.0, 2.0, 4, 8, and 16 µM doses of triazole resulted in a reduction in cell viability to 94, 70, 53, 35, 22, and 21%, respectively. Triazole treatment also led to a significant reduction in MHCC97H cell invasiveness compared to the control cells. In MHCC97H cells treated with triazole, there was a noticeable decrease in the levels of p-ERK1/2, and p-Akt protein expression. Treatment of MHCC97H cells with triazole resulted in a prominent increase in p-p38 level. In summary, triazole inhibits growth and viability of liver cancer cells through targeting the activation of p-ERK1/2 and Akt proteins. Therefore, triazole may be investigated further as a therapeutic agent for the treatment of liver cancer.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.