通过超声波辅助湿法冶金浸出法从工业固体废物中回收金属:综述

IF 15 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianfeng Ran, Yun Li, Xuxu Wang, Haisheng Duan, Ying Chen, Shaohua Yin, Shiwei Li, Libo Zhang, Jiaping Zhao
{"title":"通过超声波辅助湿法冶金浸出法从工业固体废物中回收金属:综述","authors":"Jianfeng Ran,&nbsp;Yun Li,&nbsp;Xuxu Wang,&nbsp;Haisheng Duan,&nbsp;Ying Chen,&nbsp;Shaohua Yin,&nbsp;Shiwei Li,&nbsp;Libo Zhang,&nbsp;Jiaping Zhao","doi":"10.1007/s10311-024-01743-1","DOIUrl":null,"url":null,"abstract":"<div><p>In the context of the circular economy, there is a need for advanced methods to recover metals from industrial waste, yet classical hydrometallurgical techniques are limited. Here, we review ultrasonic-assisted hydrometallurgical leaching with focus on the use of acids, bases, oxidants, bacteria and electrolysis. Oxidative leaching is done with ferric ions, dioxygen, ozone and hydrogen peroxide. Upscaling is also detailed. Ultrasonication allows to reduce the dosage of leaching agents, to reduce reaction time, and to enhance leaching efficiency. Large-scale equipments are still limited by low cavitation efficiency, low throughput, high usage costs, and high energy consumption.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 4","pages":"2055 - 2090"},"PeriodicalIF":15.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metal recovery from industrial solid waste by ultrasonic-assisted hydrometallurgical leaching: a review\",\"authors\":\"Jianfeng Ran,&nbsp;Yun Li,&nbsp;Xuxu Wang,&nbsp;Haisheng Duan,&nbsp;Ying Chen,&nbsp;Shaohua Yin,&nbsp;Shiwei Li,&nbsp;Libo Zhang,&nbsp;Jiaping Zhao\",\"doi\":\"10.1007/s10311-024-01743-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the context of the circular economy, there is a need for advanced methods to recover metals from industrial waste, yet classical hydrometallurgical techniques are limited. Here, we review ultrasonic-assisted hydrometallurgical leaching with focus on the use of acids, bases, oxidants, bacteria and electrolysis. Oxidative leaching is done with ferric ions, dioxygen, ozone and hydrogen peroxide. Upscaling is also detailed. Ultrasonication allows to reduce the dosage of leaching agents, to reduce reaction time, and to enhance leaching efficiency. Large-scale equipments are still limited by low cavitation efficiency, low throughput, high usage costs, and high energy consumption.</p></div>\",\"PeriodicalId\":541,\"journal\":{\"name\":\"Environmental Chemistry Letters\",\"volume\":\"22 4\",\"pages\":\"2055 - 2090\"},\"PeriodicalIF\":15.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Chemistry Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10311-024-01743-1\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-024-01743-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在循环经济的背景下,需要采用先进的方法从工业废物中回收金属,但传统的湿法冶金技术却很有限。在此,我们回顾了超声波辅助湿法冶金浸出法,重点介绍了酸、碱、氧化剂、细菌和电解的使用。氧化沥滤使用了铁离子、二氧、臭氧和过氧化氢。此外,还详细介绍了放大法。超声波处理可以减少浸出剂的用量,缩短反应时间,提高浸出效率。大型设备仍然受到空化效率低、产量低、使用成本高和能耗高的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Metal recovery from industrial solid waste by ultrasonic-assisted hydrometallurgical leaching: a review

Metal recovery from industrial solid waste by ultrasonic-assisted hydrometallurgical leaching: a review

In the context of the circular economy, there is a need for advanced methods to recover metals from industrial waste, yet classical hydrometallurgical techniques are limited. Here, we review ultrasonic-assisted hydrometallurgical leaching with focus on the use of acids, bases, oxidants, bacteria and electrolysis. Oxidative leaching is done with ferric ions, dioxygen, ozone and hydrogen peroxide. Upscaling is also detailed. Ultrasonication allows to reduce the dosage of leaching agents, to reduce reaction time, and to enhance leaching efficiency. Large-scale equipments are still limited by low cavitation efficiency, low throughput, high usage costs, and high energy consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Chemistry Letters
Environmental Chemistry Letters 环境科学-工程:环境
CiteScore
32.00
自引率
7.00%
发文量
175
审稿时长
2 months
期刊介绍: Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信