{"title":"用倒置有限元计算杂散场:微磁模拟中的一种新方法","authors":"Tahar Z. Boulmezaoud, Keltoum Kaliche","doi":"10.1007/s10444-024-10139-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a new method for computing the stray-field and the corresponding energy for a given magnetization configuration. Our approach is based on the use of inverted finite elements and does not need any truncation. After analyzing the problem in an appropriate functional framework, we describe the method and we prove its convergence. We then display some computational results which demonstrate its efficiency and confirm its full potential.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stray field computation by inverted finite elements: a new method in micromagnetic simulations\",\"authors\":\"Tahar Z. Boulmezaoud, Keltoum Kaliche\",\"doi\":\"10.1007/s10444-024-10139-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we propose a new method for computing the stray-field and the corresponding energy for a given magnetization configuration. Our approach is based on the use of inverted finite elements and does not need any truncation. After analyzing the problem in an appropriate functional framework, we describe the method and we prove its convergence. We then display some computational results which demonstrate its efficiency and confirm its full potential.</p></div>\",\"PeriodicalId\":50869,\"journal\":{\"name\":\"Advances in Computational Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Computational Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10444-024-10139-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10139-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Stray field computation by inverted finite elements: a new method in micromagnetic simulations
In this paper, we propose a new method for computing the stray-field and the corresponding energy for a given magnetization configuration. Our approach is based on the use of inverted finite elements and does not need any truncation. After analyzing the problem in an appropriate functional framework, we describe the method and we prove its convergence. We then display some computational results which demonstrate its efficiency and confirm its full potential.
期刊介绍:
Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis.
This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.