{"title":"具有凹槽纹理的滑动模式三电纳米发电机的各向异性摩擦学和电气化特性","authors":"Weixu Yang, Jieyang Wang, Xiaoli Wang, Ping Chen","doi":"10.1007/s40544-024-0861-z","DOIUrl":null,"url":null,"abstract":"<p>Sliding-mode triboelectric nanogenerator (S-TENG) is based on the coupling of triboelectrification and electrostatic induction, converting electrical energy from sliding motion. Introducing micro-textures into the sliding surface, and adjusting the angle between the texture and sliding direction (direction angle) may achieve performance anisotropy, which provides novel ideas for optimizing the tribology and electrification performance of S-TENG. To guide the performance optimization based on the anisotropy, in this paper, groove micro-textures were fabricated on the surface of S-TENG, and anisotropic tribology and electrification performance were obtained through changing the direction angle. Based on the surface analysis and after-cleaning tests, the mechanism of the anisotropy was explained. It is shown that the anisotropy of friction coefficient can be attributed to the changes of texture edge induced resistance and groove captured wear debris, while the voltage anisotropy is due to the variations of debris accumulated on the sliding interface and the resulting charge neutralization. Among the selected 0°–90° direction angles, S-TENG at angle of 90° exhibits relatively small stable friction coefficient and high open-circuit voltage, and thus it is recommended for the performance optimization. The open-circuit voltage is not directly associated with the friction coefficient, but closely related to the wear debris accumulated on the sliding interface. This study presents a simple and convenient method to optimize the performance of S-TENG, and help understand the correlation between its tribology and electrical performance.\n</p>","PeriodicalId":12442,"journal":{"name":"Friction","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic tribology and electrification properties of sliding-mode triboelectric nanogenerator with groove textures\",\"authors\":\"Weixu Yang, Jieyang Wang, Xiaoli Wang, Ping Chen\",\"doi\":\"10.1007/s40544-024-0861-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Sliding-mode triboelectric nanogenerator (S-TENG) is based on the coupling of triboelectrification and electrostatic induction, converting electrical energy from sliding motion. Introducing micro-textures into the sliding surface, and adjusting the angle between the texture and sliding direction (direction angle) may achieve performance anisotropy, which provides novel ideas for optimizing the tribology and electrification performance of S-TENG. To guide the performance optimization based on the anisotropy, in this paper, groove micro-textures were fabricated on the surface of S-TENG, and anisotropic tribology and electrification performance were obtained through changing the direction angle. Based on the surface analysis and after-cleaning tests, the mechanism of the anisotropy was explained. It is shown that the anisotropy of friction coefficient can be attributed to the changes of texture edge induced resistance and groove captured wear debris, while the voltage anisotropy is due to the variations of debris accumulated on the sliding interface and the resulting charge neutralization. Among the selected 0°–90° direction angles, S-TENG at angle of 90° exhibits relatively small stable friction coefficient and high open-circuit voltage, and thus it is recommended for the performance optimization. The open-circuit voltage is not directly associated with the friction coefficient, but closely related to the wear debris accumulated on the sliding interface. This study presents a simple and convenient method to optimize the performance of S-TENG, and help understand the correlation between its tribology and electrical performance.\\n</p>\",\"PeriodicalId\":12442,\"journal\":{\"name\":\"Friction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Friction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40544-024-0861-z\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Friction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40544-024-0861-z","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Anisotropic tribology and electrification properties of sliding-mode triboelectric nanogenerator with groove textures
Sliding-mode triboelectric nanogenerator (S-TENG) is based on the coupling of triboelectrification and electrostatic induction, converting electrical energy from sliding motion. Introducing micro-textures into the sliding surface, and adjusting the angle between the texture and sliding direction (direction angle) may achieve performance anisotropy, which provides novel ideas for optimizing the tribology and electrification performance of S-TENG. To guide the performance optimization based on the anisotropy, in this paper, groove micro-textures were fabricated on the surface of S-TENG, and anisotropic tribology and electrification performance were obtained through changing the direction angle. Based on the surface analysis and after-cleaning tests, the mechanism of the anisotropy was explained. It is shown that the anisotropy of friction coefficient can be attributed to the changes of texture edge induced resistance and groove captured wear debris, while the voltage anisotropy is due to the variations of debris accumulated on the sliding interface and the resulting charge neutralization. Among the selected 0°–90° direction angles, S-TENG at angle of 90° exhibits relatively small stable friction coefficient and high open-circuit voltage, and thus it is recommended for the performance optimization. The open-circuit voltage is not directly associated with the friction coefficient, but closely related to the wear debris accumulated on the sliding interface. This study presents a simple and convenient method to optimize the performance of S-TENG, and help understand the correlation between its tribology and electrical performance.
期刊介绍:
Friction is a peer-reviewed international journal for the publication of theoretical and experimental research works related to the friction, lubrication and wear. Original, high quality research papers and review articles on all aspects of tribology are welcome, including, but are not limited to, a variety of topics, such as:
Friction: Origin of friction, Friction theories, New phenomena of friction, Nano-friction, Ultra-low friction, Molecular friction, Ultra-high friction, Friction at high speed, Friction at high temperature or low temperature, Friction at solid/liquid interfaces, Bio-friction, Adhesion, etc.
Lubrication: Superlubricity, Green lubricants, Nano-lubrication, Boundary lubrication, Thin film lubrication, Elastohydrodynamic lubrication, Mixed lubrication, New lubricants, New additives, Gas lubrication, Solid lubrication, etc.
Wear: Wear materials, Wear mechanism, Wear models, Wear in severe conditions, Wear measurement, Wear monitoring, etc.
Surface Engineering: Surface texturing, Molecular films, Surface coatings, Surface modification, Bionic surfaces, etc.
Basic Sciences: Tribology system, Principles of tribology, Thermodynamics of tribo-systems, Micro-fluidics, Thermal stability of tribo-systems, etc.
Friction is an open access journal. It is published quarterly by Tsinghua University Press and Springer, and sponsored by the State Key Laboratory of Tribology (TsinghuaUniversity) and the Tribology Institute of Chinese Mechanical Engineering Society.