{"title":"基于热力学扩散-渗流耦合的含瓦斯煤的解吸应变动力学","authors":"Chengmin Wei, Chengwu Li, Zhenfei Li, Mingjie Li, Min Hao, Yifan Yin","doi":"10.1007/s11053-024-10346-0","DOIUrl":null,"url":null,"abstract":"<p>The characteristics of coal desorption strain play a crucial role in coal permeability, coalbed methane (CBM) recovery, and the prevention of outbursts. This study developed an improved thermomechanical diffusion–seepage (TMDS) coupling model to investigate the strain evolution during the gas desorption process in coal. The model considers the time-varying diffusion coefficient, the Klinkenberg permeability effect, and the impact of moisture on adsorption, amending the traditional coal deformation equation and coal permeability model. Utilizing this model, the study explored the mechanism, contribution, and spatiotemporal evolution of desorption strain, while analyzing quantitatively the effects of gas types and TMDS parameters on the dynamics of desorption strain. The results demonstrate that desorption strain consists of fracture pressure, matrix pressure, desorption action, and temperature effects, with desorption action being the predominant factor. The impact of gas type, especially CO<sub>2</sub>, on desorption strain is significant, with CO<sub>2</sub> enhancing CH<sub>4</sub> desorption strain more than N<sub>2</sub>. Additionally, the study explored the sensitivity of desorption strain to TMDS parameters, revealing that gas pressure, permeability, and Langmuir pressure significantly impact desorption strain. Desorption strain can serve as an indicator for predicting and evaluating the risk of outbursts, and the injection of low-temperature liquid nitrogen could help reduce this risk. This research provides insights for further understanding the desorption mechanism in gas-bearing coal, improving CBM recovery, and preventing disasters.</p>","PeriodicalId":54284,"journal":{"name":"Natural Resources Research","volume":"61 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Desorption Strain Kinetics of Gas-Bearing Coal based on Thermomechanical Diffusion–Seepage Coupling\",\"authors\":\"Chengmin Wei, Chengwu Li, Zhenfei Li, Mingjie Li, Min Hao, Yifan Yin\",\"doi\":\"10.1007/s11053-024-10346-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The characteristics of coal desorption strain play a crucial role in coal permeability, coalbed methane (CBM) recovery, and the prevention of outbursts. This study developed an improved thermomechanical diffusion–seepage (TMDS) coupling model to investigate the strain evolution during the gas desorption process in coal. The model considers the time-varying diffusion coefficient, the Klinkenberg permeability effect, and the impact of moisture on adsorption, amending the traditional coal deformation equation and coal permeability model. Utilizing this model, the study explored the mechanism, contribution, and spatiotemporal evolution of desorption strain, while analyzing quantitatively the effects of gas types and TMDS parameters on the dynamics of desorption strain. The results demonstrate that desorption strain consists of fracture pressure, matrix pressure, desorption action, and temperature effects, with desorption action being the predominant factor. The impact of gas type, especially CO<sub>2</sub>, on desorption strain is significant, with CO<sub>2</sub> enhancing CH<sub>4</sub> desorption strain more than N<sub>2</sub>. Additionally, the study explored the sensitivity of desorption strain to TMDS parameters, revealing that gas pressure, permeability, and Langmuir pressure significantly impact desorption strain. Desorption strain can serve as an indicator for predicting and evaluating the risk of outbursts, and the injection of low-temperature liquid nitrogen could help reduce this risk. This research provides insights for further understanding the desorption mechanism in gas-bearing coal, improving CBM recovery, and preventing disasters.</p>\",\"PeriodicalId\":54284,\"journal\":{\"name\":\"Natural Resources Research\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Resources Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11053-024-10346-0\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Resources Research","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11053-024-10346-0","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Desorption Strain Kinetics of Gas-Bearing Coal based on Thermomechanical Diffusion–Seepage Coupling
The characteristics of coal desorption strain play a crucial role in coal permeability, coalbed methane (CBM) recovery, and the prevention of outbursts. This study developed an improved thermomechanical diffusion–seepage (TMDS) coupling model to investigate the strain evolution during the gas desorption process in coal. The model considers the time-varying diffusion coefficient, the Klinkenberg permeability effect, and the impact of moisture on adsorption, amending the traditional coal deformation equation and coal permeability model. Utilizing this model, the study explored the mechanism, contribution, and spatiotemporal evolution of desorption strain, while analyzing quantitatively the effects of gas types and TMDS parameters on the dynamics of desorption strain. The results demonstrate that desorption strain consists of fracture pressure, matrix pressure, desorption action, and temperature effects, with desorption action being the predominant factor. The impact of gas type, especially CO2, on desorption strain is significant, with CO2 enhancing CH4 desorption strain more than N2. Additionally, the study explored the sensitivity of desorption strain to TMDS parameters, revealing that gas pressure, permeability, and Langmuir pressure significantly impact desorption strain. Desorption strain can serve as an indicator for predicting and evaluating the risk of outbursts, and the injection of low-temperature liquid nitrogen could help reduce this risk. This research provides insights for further understanding the desorption mechanism in gas-bearing coal, improving CBM recovery, and preventing disasters.
期刊介绍:
This journal publishes quantitative studies of natural (mainly but not limited to mineral) resources exploration, evaluation and exploitation, including environmental and risk-related aspects. Typical articles use geoscientific data or analyses to assess, test, or compare resource-related aspects. NRR covers a wide variety of resources including minerals, coal, hydrocarbon, geothermal, water, and vegetation. Case studies are welcome.