超灵敏织物应变传感器重新定义了可穿戴式无声语音接口,具有极高的机器学习效率

IF 12.3 1区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi Giuseppe Occhipinti
{"title":"超灵敏织物应变传感器重新定义了可穿戴式无声语音接口,具有极高的机器学习效率","authors":"Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi Giuseppe Occhipinti","doi":"10.1038/s41528-024-00315-1","DOIUrl":null,"url":null,"abstract":"This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy, high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of 317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture subtle throat movements, simplifying signal processing and enabling the use of a computationally efficient neural network. The resulting neural network, based on a one-dimensional convolutional model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in speech decoding. The synergy in sensor design and neural network optimization offers a promising solution for practical, wearable SSI systems, paving the way for seamless, natural silent communication in diverse settings.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-11"},"PeriodicalIF":12.3000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00315-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Ultrasensitive textile strain sensors redefine wearable silent speech interfaces with high machine learning efficiency\",\"authors\":\"Chenyu Tang, Muzi Xu, Wentian Yi, Zibo Zhang, Edoardo Occhipinti, Chaoqun Dong, Dafydd Ravenscroft, Sung-Min Jung, Sanghyo Lee, Shuo Gao, Jong Min Kim, Luigi Giuseppe Occhipinti\",\"doi\":\"10.1038/s41528-024-00315-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy, high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of 317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture subtle throat movements, simplifying signal processing and enabling the use of a computationally efficient neural network. The resulting neural network, based on a one-dimensional convolutional model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in speech decoding. The synergy in sensor design and neural network optimization offers a promising solution for practical, wearable SSI systems, paving the way for seamless, natural silent communication in diverse settings.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00315-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00315-1\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00315-1","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了一种无声语音接口(SSI),提出了一种基于彻底裂纹和基于人工智能的自适应能力的几层石墨烯(FLG)应变传感机制,克服了最先进技术的局限性,同时实现了高精度、高计算效率和快速解码速度,并保持了极佳的用户舒适度。我们展示了其在生物兼容纺织品集成超灵敏应变传感器中的应用,该传感器被嵌入到一个智能颈圈中,与用户的喉咙相适应。由于石墨烯涂层纺织品中的有序裂缝结构,所提出的应变计在<5%应变下的测量系数达到了317,与迄今为止报道的通过印刷和涂层技术制造的现有纺织品应变传感器相比,提高了420%。它的高灵敏度使其能够捕捉到细微的喉部运动,简化了信号处理,并能够使用计算效率高的神经网络。由此产生的神经网络以一维卷积模型为基础,将计算负荷减少了 90%,同时在语音解码方面保持了 95.25% 的出色准确率。传感器设计和神经网络优化的协同作用为实用的可穿戴式 SSI 系统提供了一种前景广阔的解决方案,为在各种环境中进行无缝、自然的无声交流铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ultrasensitive textile strain sensors redefine wearable silent speech interfaces with high machine learning efficiency

Ultrasensitive textile strain sensors redefine wearable silent speech interfaces with high machine learning efficiency
This work introduces a silent speech interface (SSI), proposing a few-layer graphene (FLG) strain sensing mechanism based on thorough cracks and AI-based self-adaptation capabilities that overcome the limitations of state-of-the-art technologies by simultaneously achieving high accuracy, high computational efficiency, and fast decoding speed while maintaining excellent user comfort. We demonstrate its application in a biocompatible textile-integrated ultrasensitive strain sensor embedded into a smart choker, which conforms to the user’s throat. Thanks to the structure of ordered through cracks in the graphene-coated textile, the proposed strain gauge achieves a gauge factor of 317 with <5% strain, corresponding to a 420% improvement over existing textile strain sensors fabricated by printing and coating technologies reported to date. Its high sensitivity allows it to capture subtle throat movements, simplifying signal processing and enabling the use of a computationally efficient neural network. The resulting neural network, based on a one-dimensional convolutional model, reduces computational load by 90% while maintaining a remarkable 95.25% accuracy in speech decoding. The synergy in sensor design and neural network optimization offers a promising solution for practical, wearable SSI systems, paving the way for seamless, natural silent communication in diverse settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
17.10
自引率
4.80%
发文量
91
审稿时长
6 weeks
期刊介绍: npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信