线弧快速成型试样的红外成像表面粗糙度临界值评估

Mathilde Renault , Lorenzo Bercelli , Cédric Doudard , Bruno Levieil , Julien Beaudet , Sylvain Calloch
{"title":"线弧快速成型试样的红外成像表面粗糙度临界值评估","authors":"Mathilde Renault ,&nbsp;Lorenzo Bercelli ,&nbsp;Cédric Doudard ,&nbsp;Bruno Levieil ,&nbsp;Julien Beaudet ,&nbsp;Sylvain Calloch","doi":"10.1016/j.prostr.2024.03.004","DOIUrl":null,"url":null,"abstract":"<div><p>Wire Arc Additive Manufacturing is an additive manufacturing process with a high rate of material deposition capable of producing near-net shape parts. This process involves the reduction of production costs (material and lead times) and considers innovative designs. However, the deposition technique induces heterogeneities in the material, in particular the presence of porosity and a degraded surface finish. The process-induced surface asperities have a first-order influence on the fatigue life of as-built parts as they act as stress raisers. Various finishing treatments can be considered to reduce the criticality of the surface finish influence over crack initiation and propagation: conventional ones such as hammer, laser or shot peening and some specially developed for Additive Manufacturing (AM) processes such as <em>in-situ</em> cooling or hot rolling. The multitude of AM parameters and the different finishing surface post-treatments entail many configurations that will modify fatigue properties. For this reason, rapid fatigue evaluation methods are an asset for process evaluation.</p><p>Thermo-elastic Stress Analysis (TSA) is a non-contact technique for measuring the distribution of stress at the surface of a component subject to cyclic loading using an infrared camera. The analysis of the thermo-elastic coupling amplitude maps allows the detection of initiation and monitoring of crack propagation. A four-point bending fatigue test protocol is conducted on CuAl9 WAAM specimens take in different direction for the deposition direction. Then failure mode and life duration are compared for the 2 directions.</p></div>","PeriodicalId":20518,"journal":{"name":"Procedia Structural Integrity","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245232162400221X/pdf?md5=b481323fbf212ecef5182a5fb5141e17&pid=1-s2.0-S245232162400221X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Infrared imaging surface roughness criticality assessment of Wire Arc Additive Manufactured specimens\",\"authors\":\"Mathilde Renault ,&nbsp;Lorenzo Bercelli ,&nbsp;Cédric Doudard ,&nbsp;Bruno Levieil ,&nbsp;Julien Beaudet ,&nbsp;Sylvain Calloch\",\"doi\":\"10.1016/j.prostr.2024.03.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wire Arc Additive Manufacturing is an additive manufacturing process with a high rate of material deposition capable of producing near-net shape parts. This process involves the reduction of production costs (material and lead times) and considers innovative designs. However, the deposition technique induces heterogeneities in the material, in particular the presence of porosity and a degraded surface finish. The process-induced surface asperities have a first-order influence on the fatigue life of as-built parts as they act as stress raisers. Various finishing treatments can be considered to reduce the criticality of the surface finish influence over crack initiation and propagation: conventional ones such as hammer, laser or shot peening and some specially developed for Additive Manufacturing (AM) processes such as <em>in-situ</em> cooling or hot rolling. The multitude of AM parameters and the different finishing surface post-treatments entail many configurations that will modify fatigue properties. For this reason, rapid fatigue evaluation methods are an asset for process evaluation.</p><p>Thermo-elastic Stress Analysis (TSA) is a non-contact technique for measuring the distribution of stress at the surface of a component subject to cyclic loading using an infrared camera. The analysis of the thermo-elastic coupling amplitude maps allows the detection of initiation and monitoring of crack propagation. A four-point bending fatigue test protocol is conducted on CuAl9 WAAM specimens take in different direction for the deposition direction. Then failure mode and life duration are compared for the 2 directions.</p></div>\",\"PeriodicalId\":20518,\"journal\":{\"name\":\"Procedia Structural Integrity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S245232162400221X/pdf?md5=b481323fbf212ecef5182a5fb5141e17&pid=1-s2.0-S245232162400221X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245232162400221X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245232162400221X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

线弧快速成型技术是一种材料沉积率很高的快速成型制造工艺,能够生产出接近净形的零件。该工艺可降低生产成本(材料和交货时间),并考虑创新设计。然而,沉积技术会在材料中产生异质性,特别是气孔的存在和表面光洁度的下降。加工过程中产生的表面粗糙会对成品部件的疲劳寿命产生一阶影响,因为它们会增加应力。为了降低表面光洁度对裂纹产生和扩展的重要影响,可以考虑采用多种表面处理方法:传统的锤击、激光或喷丸强化,以及专门为增材制造(AM)工艺开发的原位冷却或热轧等方法。大量的 AM 参数和不同的精加工表面后处理会产生许多会改变疲劳特性的配置。热弹性应力分析(TSA)是一种非接触式技术,使用红外摄像机测量受循环载荷影响的部件表面的应力分布。通过分析热弹性耦合振幅图,可以检测裂纹的产生并监测裂纹的扩展。在不同沉积方向的 CuAl9 WAAM 试样上进行了四点弯曲疲劳试验。然后比较了两个方向的失效模式和寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Infrared imaging surface roughness criticality assessment of Wire Arc Additive Manufactured specimens

Wire Arc Additive Manufacturing is an additive manufacturing process with a high rate of material deposition capable of producing near-net shape parts. This process involves the reduction of production costs (material and lead times) and considers innovative designs. However, the deposition technique induces heterogeneities in the material, in particular the presence of porosity and a degraded surface finish. The process-induced surface asperities have a first-order influence on the fatigue life of as-built parts as they act as stress raisers. Various finishing treatments can be considered to reduce the criticality of the surface finish influence over crack initiation and propagation: conventional ones such as hammer, laser or shot peening and some specially developed for Additive Manufacturing (AM) processes such as in-situ cooling or hot rolling. The multitude of AM parameters and the different finishing surface post-treatments entail many configurations that will modify fatigue properties. For this reason, rapid fatigue evaluation methods are an asset for process evaluation.

Thermo-elastic Stress Analysis (TSA) is a non-contact technique for measuring the distribution of stress at the surface of a component subject to cyclic loading using an infrared camera. The analysis of the thermo-elastic coupling amplitude maps allows the detection of initiation and monitoring of crack propagation. A four-point bending fatigue test protocol is conducted on CuAl9 WAAM specimens take in different direction for the deposition direction. Then failure mode and life duration are compared for the 2 directions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信