奥地利接龙中的循环

IF 1 3区 数学 Q1 MATHEMATICS
Philip P. Mummert
{"title":"奥地利接龙中的循环","authors":"Philip P. Mummert","doi":"10.1016/j.ejc.2024.103978","DOIUrl":null,"url":null,"abstract":"<div><p>Austrian Solitaire is a variation of Bulgarian Solitaire. It may be described as a card game, a method of asset inventory management, or a discrete dynamical system on integer partitions. We prove that the limit cycles in Austrian Solitaire do not depend on the initial configuration; in other words, each state space is connected. We show that a full Farey sequence completely characterizes these unique (and balanced) cycles.</p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cycles in Austrian Solitaire\",\"authors\":\"Philip P. Mummert\",\"doi\":\"10.1016/j.ejc.2024.103978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Austrian Solitaire is a variation of Bulgarian Solitaire. It may be described as a card game, a method of asset inventory management, or a discrete dynamical system on integer partitions. We prove that the limit cycles in Austrian Solitaire do not depend on the initial configuration; in other words, each state space is connected. We show that a full Farey sequence completely characterizes these unique (and balanced) cycles.</p></div>\",\"PeriodicalId\":50490,\"journal\":{\"name\":\"European Journal of Combinatorics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0195669824000635\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669824000635","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

奥地利接龙是保加利亚接龙的一种变体。它可以被描述为一种纸牌游戏、一种资产库存管理方法或一种整数分区上的离散动力系统。我们证明了奥地利接龙的极限循环不依赖于初始配置;换句话说,每个状态空间都是相连的。我们证明,一个完整的法雷序列完全表征了这些独特(且平衡)的循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cycles in Austrian Solitaire

Austrian Solitaire is a variation of Bulgarian Solitaire. It may be described as a card game, a method of asset inventory management, or a discrete dynamical system on integer partitions. We prove that the limit cycles in Austrian Solitaire do not depend on the initial configuration; in other words, each state space is connected. We show that a full Farey sequence completely characterizes these unique (and balanced) cycles.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信