有机电化学晶体管的生物电子界面

Abdulelah Saleh, Anil Koklu, Ilke Uguz, Anna-Maria Pappa, Sahika Inal
{"title":"有机电化学晶体管的生物电子界面","authors":"Abdulelah Saleh, Anil Koklu, Ilke Uguz, Anna-Maria Pappa, Sahika Inal","doi":"10.1038/s44222-024-00180-7","DOIUrl":null,"url":null,"abstract":"Organic electrochemical transistors (OECTs) are electronic devices relying on electronic materials that are stable in aqueous environments. OECTs leverage ionic solutions for their operation, so OECTs are well-suited for interfacing with biological systems for electrophysiology and biochemical sensing, in particular, in point-of-care diagnostics, wearable and implantable technologies, and in organ-on-chip systems. The interface of OECTs with biological systems is a crucial parameter that determines the function and performance of the devices, influencing the design criteria, including the selection of materials and device form factor, geometry and architecture. The selected design features must enable seamless interaction with biological components while ensuring reliable and stable device performance in complex settings. In this Review, we investigate the biological interfaces of OECT-based biosensors, examining their complexity and length scale. We highlight interface designs with biomolecules, such as lipids, proteins and aptamers, as well as in vitro cell culture and the human body. Importantly, we explore strategies to improve each interface type and identify gaps in our current understanding that warrant further investigation. The organic electrochemical transistor stands out as a tool for constructing powerful biosensors owing to its high signal transduction ability and adaptability to various geometrical forms. However, the performance of organic electrochemical transistors relies on stable and seamless interfaces with biological systems. This Review examines strategies to improve and optimize interfaces between organic electrochemical transistors and various biological components.","PeriodicalId":74248,"journal":{"name":"Nature reviews bioengineering","volume":"2 7","pages":"559-574"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioelectronic interfaces of organic electrochemical transistors\",\"authors\":\"Abdulelah Saleh, Anil Koklu, Ilke Uguz, Anna-Maria Pappa, Sahika Inal\",\"doi\":\"10.1038/s44222-024-00180-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Organic electrochemical transistors (OECTs) are electronic devices relying on electronic materials that are stable in aqueous environments. OECTs leverage ionic solutions for their operation, so OECTs are well-suited for interfacing with biological systems for electrophysiology and biochemical sensing, in particular, in point-of-care diagnostics, wearable and implantable technologies, and in organ-on-chip systems. The interface of OECTs with biological systems is a crucial parameter that determines the function and performance of the devices, influencing the design criteria, including the selection of materials and device form factor, geometry and architecture. The selected design features must enable seamless interaction with biological components while ensuring reliable and stable device performance in complex settings. In this Review, we investigate the biological interfaces of OECT-based biosensors, examining their complexity and length scale. We highlight interface designs with biomolecules, such as lipids, proteins and aptamers, as well as in vitro cell culture and the human body. Importantly, we explore strategies to improve each interface type and identify gaps in our current understanding that warrant further investigation. The organic electrochemical transistor stands out as a tool for constructing powerful biosensors owing to its high signal transduction ability and adaptability to various geometrical forms. However, the performance of organic electrochemical transistors relies on stable and seamless interfaces with biological systems. This Review examines strategies to improve and optimize interfaces between organic electrochemical transistors and various biological components.\",\"PeriodicalId\":74248,\"journal\":{\"name\":\"Nature reviews bioengineering\",\"volume\":\"2 7\",\"pages\":\"559-574\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature reviews bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44222-024-00180-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature reviews bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44222-024-00180-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有机电化学晶体管(OECT)是一种依靠在水环境中稳定的电子材料制成的电子器件。有机电化学晶体管利用离子溶液进行工作,因此非常适合与生物系统连接,用于电生理学和生化传感,特别是在护理点诊断、可穿戴和植入技术以及片上器官系统中。OECT 与生物系统的接口是决定设备功能和性能的关键参数,影响着设计标准,包括材料和设备外形尺寸、几何形状和结构的选择。所选的设计特征必须能够与生物元件无缝互动,同时确保在复杂环境中装置性能的可靠和稳定。在本综述中,我们研究了基于 OECT 的生物传感器的生物界面,考察了其复杂性和长度范围。我们重点介绍了与生物大分子(如脂质、蛋白质和适配体)以及体外细胞培养和人体的界面设计。重要的是,我们探讨了改进每种界面类型的策略,并找出了我们目前的认识中存在的差距,这些差距值得我们进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioelectronic interfaces of organic electrochemical transistors

Bioelectronic interfaces of organic electrochemical transistors

Bioelectronic interfaces of organic electrochemical transistors
Organic electrochemical transistors (OECTs) are electronic devices relying on electronic materials that are stable in aqueous environments. OECTs leverage ionic solutions for their operation, so OECTs are well-suited for interfacing with biological systems for electrophysiology and biochemical sensing, in particular, in point-of-care diagnostics, wearable and implantable technologies, and in organ-on-chip systems. The interface of OECTs with biological systems is a crucial parameter that determines the function and performance of the devices, influencing the design criteria, including the selection of materials and device form factor, geometry and architecture. The selected design features must enable seamless interaction with biological components while ensuring reliable and stable device performance in complex settings. In this Review, we investigate the biological interfaces of OECT-based biosensors, examining their complexity and length scale. We highlight interface designs with biomolecules, such as lipids, proteins and aptamers, as well as in vitro cell culture and the human body. Importantly, we explore strategies to improve each interface type and identify gaps in our current understanding that warrant further investigation. The organic electrochemical transistor stands out as a tool for constructing powerful biosensors owing to its high signal transduction ability and adaptability to various geometrical forms. However, the performance of organic electrochemical transistors relies on stable and seamless interfaces with biological systems. This Review examines strategies to improve and optimize interfaces between organic electrochemical transistors and various biological components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信