{"title":"实现高读取性能的互补磁化开关垂直自旋轨道转矩随机存取存储器单元","authors":"Hao Zhang;Di Wang;Long Liu;Yu Liu;Huai Lin;Yifan Zhang;Changqing Xie","doi":"10.1109/LMAG.2024.3396750","DOIUrl":null,"url":null,"abstract":"The read reliability of spin-transfer torque magnetic random-access memory (STT-MRAM) is greatly hindered by a low sensing margin as a result of a small tunneling magnetoresistance ratio. Although the new generation of perpendicular anisotropy spin-orbit torque (SOT)-MRAM offers faster access speed and a longer lifetime than STT-MRAM, its read performance has not improved or even deteriorated because of the additional resistance of the SOT channel in the read path. In this letter, we propose two novel cell structures of SOT-MRAM that consist of one/two transistors, two diodes, and two magnetic tunnel junctions (1T2D2MTJ/2T2D2MTJ) on a shared U-shaped antiferromagnet layer, enabling a self-referencing scheme. Thanks to the bent current channel, the opposite direction of the SOT current below the free layers can one-step switch different data states in compatibility with the existing fabrication process of SOT-MRAM. Combined with the 28 nm tech node and Verilog-A MTJ compact model, the simulation results show that our MRAM cell significantly improves the sensing margin and bit error rate over the conventional two transistors and one MTJ (2T1M) cell, which is expected to become a high read performance solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complementary-Magnetization-Switching Perpendicular Spin-Orbit Torque Random-Access Memory Cell for High Read Performance\",\"authors\":\"Hao Zhang;Di Wang;Long Liu;Yu Liu;Huai Lin;Yifan Zhang;Changqing Xie\",\"doi\":\"10.1109/LMAG.2024.3396750\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The read reliability of spin-transfer torque magnetic random-access memory (STT-MRAM) is greatly hindered by a low sensing margin as a result of a small tunneling magnetoresistance ratio. Although the new generation of perpendicular anisotropy spin-orbit torque (SOT)-MRAM offers faster access speed and a longer lifetime than STT-MRAM, its read performance has not improved or even deteriorated because of the additional resistance of the SOT channel in the read path. In this letter, we propose two novel cell structures of SOT-MRAM that consist of one/two transistors, two diodes, and two magnetic tunnel junctions (1T2D2MTJ/2T2D2MTJ) on a shared U-shaped antiferromagnet layer, enabling a self-referencing scheme. Thanks to the bent current channel, the opposite direction of the SOT current below the free layers can one-step switch different data states in compatibility with the existing fabrication process of SOT-MRAM. Combined with the 28 nm tech node and Verilog-A MTJ compact model, the simulation results show that our MRAM cell significantly improves the sensing margin and bit error rate over the conventional two transistors and one MTJ (2T1M) cell, which is expected to become a high read performance solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10518082/\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10518082/","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
自旋转移力矩磁性随机存取存储器(STT-MRAM)的读取可靠性因隧道磁阻比小而感应裕度低而大受影响。虽然新一代垂直各向异性自旋轨道力矩(SOT)-MRAM 比 STT-MRAM 具有更快的存取速度和更长的使用寿命,但由于 SOT 通道在读取路径中的附加电阻,其读取性能并未得到改善,甚至有所下降。在这封信中,我们提出了两种新型 SOT-MRAM 单元结构,它们由一个/两个晶体管、两个二极管和两个磁隧道结(1T2D2MTJ/2T2D2MTJ)组成,位于一个共享的 U 型反铁磁体层上,从而实现了自参照方案。得益于弯曲的电流通道,自由层下的 SOT 电流的相反方向可以一步切换不同的数据状态,与现有的 SOT-MRAM 制造工艺兼容。结合 28 纳米技术节点和 Verilog-A MTJ 紧凑型模型,仿真结果表明,与传统的两个晶体管和一个 MTJ(2T1M)单元相比,我们的 MRAM 单元显著提高了传感裕度和误码率,有望成为一种高读取性能解决方案。
Complementary-Magnetization-Switching Perpendicular Spin-Orbit Torque Random-Access Memory Cell for High Read Performance
The read reliability of spin-transfer torque magnetic random-access memory (STT-MRAM) is greatly hindered by a low sensing margin as a result of a small tunneling magnetoresistance ratio. Although the new generation of perpendicular anisotropy spin-orbit torque (SOT)-MRAM offers faster access speed and a longer lifetime than STT-MRAM, its read performance has not improved or even deteriorated because of the additional resistance of the SOT channel in the read path. In this letter, we propose two novel cell structures of SOT-MRAM that consist of one/two transistors, two diodes, and two magnetic tunnel junctions (1T2D2MTJ/2T2D2MTJ) on a shared U-shaped antiferromagnet layer, enabling a self-referencing scheme. Thanks to the bent current channel, the opposite direction of the SOT current below the free layers can one-step switch different data states in compatibility with the existing fabrication process of SOT-MRAM. Combined with the 28 nm tech node and Verilog-A MTJ compact model, the simulation results show that our MRAM cell significantly improves the sensing margin and bit error rate over the conventional two transistors and one MTJ (2T1M) cell, which is expected to become a high read performance solution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.