{"title":"角蛋白废料对聚(ε-己内酯)薄膜的影响:结构特性、热性能以及角质细胞活力和增殖研究","authors":"Gianluca Rinaldi, Elena Coccia, Nancy Ferrentino, Chiara Germinario, Celestino Grifa, Marina Paolucci, Daniela Pappalardo","doi":"10.1155/2024/3308910","DOIUrl":null,"url":null,"abstract":"<p>Keratin extracted (KE) from chicken feathers was used for the production of composite films comprising poly(<i>ε</i>-caprolactone) (PCL) and keratin (PCL/KE films). The process involved the extraction of keratin from chicken feathers using a 0.1 M NaOH solution, followed by characterization via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The PCL was synthesized through the <i>ring-opening polymerization</i> (ROP) of <i>ε</i>-caprolactone (<i>ԑ</i>-CL) with Sn(Oct)<sub>2</sub> as a catalyst. Films were prepared via solvent casting, including pure PCL films and those enriched with different weight percentages of KE (10%, 15%, 25%, and 30%). The films were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). SEM analysis revealed a more uniform incorporation of KE within the PCL matrix in the case of the 15% keratin-enriched film (PCL/KE15) as compared to other keratin percentages. The thermal analysis showed a positive influence of keratin on the thermal stability of the films. Keratinocytes viability and proliferation tests on the PCL/KE15 film demonstrated compatibility with cells. Collectively, these results hold relevance for potential biomedical applications of PCL/KE films.</p>","PeriodicalId":7372,"journal":{"name":"Advances in Polymer Technology","volume":"2024 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3308910","citationCount":"0","resultStr":"{\"title\":\"Effect of Keratin Waste on Poly(ε-Caprolactone) Films: Structural Characterization, Thermal Properties, and Keratinocytes Viability and Proliferation Studies\",\"authors\":\"Gianluca Rinaldi, Elena Coccia, Nancy Ferrentino, Chiara Germinario, Celestino Grifa, Marina Paolucci, Daniela Pappalardo\",\"doi\":\"10.1155/2024/3308910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Keratin extracted (KE) from chicken feathers was used for the production of composite films comprising poly(<i>ε</i>-caprolactone) (PCL) and keratin (PCL/KE films). The process involved the extraction of keratin from chicken feathers using a 0.1 M NaOH solution, followed by characterization via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The PCL was synthesized through the <i>ring-opening polymerization</i> (ROP) of <i>ε</i>-caprolactone (<i>ԑ</i>-CL) with Sn(Oct)<sub>2</sub> as a catalyst. Films were prepared via solvent casting, including pure PCL films and those enriched with different weight percentages of KE (10%, 15%, 25%, and 30%). The films were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). SEM analysis revealed a more uniform incorporation of KE within the PCL matrix in the case of the 15% keratin-enriched film (PCL/KE15) as compared to other keratin percentages. The thermal analysis showed a positive influence of keratin on the thermal stability of the films. Keratinocytes viability and proliferation tests on the PCL/KE15 film demonstrated compatibility with cells. Collectively, these results hold relevance for potential biomedical applications of PCL/KE films.</p>\",\"PeriodicalId\":7372,\"journal\":{\"name\":\"Advances in Polymer Technology\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/3308910\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Polymer Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/3308910\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Polymer Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/3308910","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
摘要
从鸡毛中提取的角蛋白(KE)被用于生产由聚ε-己内酯(PCL)和角蛋白组成的复合薄膜(PCL/KE 薄膜)。生产过程包括使用 0.1 M NaOH 溶液从鸡毛中提取角蛋白,然后通过十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)进行表征。以 Sn(Oct)2 为催化剂,通过ε-己内酯(ԑ-CL)的开环聚合(ROP)合成了 PCL。通过溶剂浇铸制备了薄膜,包括纯 PCL 薄膜和富含不同重量百分比 KE 的薄膜(10%、15%、25% 和 30%)。通过差示扫描量热法(DSC)、热重分析法(TG)和扫描电子显微镜(SEM)对薄膜进行了表征。扫描电子显微镜分析表明,与其他角蛋白百分比的薄膜相比,富含 15% 角蛋白的薄膜(PCL/KE15)中 KE 在 PCL 基质中的结合更加均匀。热分析表明,角蛋白对薄膜的热稳定性有积极影响。在 PCL/KE15 薄膜上进行的角质细胞存活率和增殖测试表明了与细胞的相容性。总之,这些结果对 PCL/KE 薄膜的潜在生物医学应用具有重要意义。
Effect of Keratin Waste on Poly(ε-Caprolactone) Films: Structural Characterization, Thermal Properties, and Keratinocytes Viability and Proliferation Studies
Keratin extracted (KE) from chicken feathers was used for the production of composite films comprising poly(ε-caprolactone) (PCL) and keratin (PCL/KE films). The process involved the extraction of keratin from chicken feathers using a 0.1 M NaOH solution, followed by characterization via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The PCL was synthesized through the ring-opening polymerization (ROP) of ε-caprolactone (ԑ-CL) with Sn(Oct)2 as a catalyst. Films were prepared via solvent casting, including pure PCL films and those enriched with different weight percentages of KE (10%, 15%, 25%, and 30%). The films were characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG), and scanning electron microscopy (SEM). SEM analysis revealed a more uniform incorporation of KE within the PCL matrix in the case of the 15% keratin-enriched film (PCL/KE15) as compared to other keratin percentages. The thermal analysis showed a positive influence of keratin on the thermal stability of the films. Keratinocytes viability and proliferation tests on the PCL/KE15 film demonstrated compatibility with cells. Collectively, these results hold relevance for potential biomedical applications of PCL/KE films.
期刊介绍:
Advances in Polymer Technology publishes articles reporting important developments in polymeric materials, their manufacture and processing, and polymer product design, as well as those considering the economic and environmental impacts of polymer technology. The journal primarily caters to researchers, technologists, engineers, consultants, and production personnel.