Huaqi Zhao, Xiang Peng, Su Wang, Jun-Bao Li, Jeng-Shyang Pan, Xiaoguang Su, Xiaomin Liu
{"title":"基于变压器的改进型无人驾驶物体检测方法","authors":"Huaqi Zhao, Xiang Peng, Su Wang, Jun-Bao Li, Jeng-Shyang Pan, Xiaoguang Su, Xiaomin Liu","doi":"10.3389/fnbot.2024.1342126","DOIUrl":null,"url":null,"abstract":"The object detection method serves as the core technology within the unmanned driving perception module, extensively employed for detecting vehicles, pedestrians, traffic signs, and various objects. However, existing object detection methods still encounter three challenges in intricate unmanned driving scenarios: unsatisfactory performance in multi-scale object detection, inadequate accuracy in detecting small objects, and occurrences of false positives and missed detections in densely occluded environments. Therefore, this study proposes an improved object detection method for unmanned driving, leveraging Transformer architecture to address these challenges. First, a multi-scale Transformer feature extraction method integrated with channel attention is used to enhance the network's capability in extracting features across different scales. Second, a training method incorporating Query Denoising with Gaussian decay was employed to enhance the network's proficiency in learning representations of small objects. Third, a hybrid matching method combining Optimal Transport and Hungarian algorithms was used to facilitate the matching process between predicted and actual values, thereby enriching the network with more informative positive sample features. Experimental evaluations conducted on datasets including KITTI demonstrate that the proposed method achieves 3% higher mean Average Precision (mAP) than that of the existing methodologies.","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"107 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved object detection method for unmanned driving based on Transformers\",\"authors\":\"Huaqi Zhao, Xiang Peng, Su Wang, Jun-Bao Li, Jeng-Shyang Pan, Xiaoguang Su, Xiaomin Liu\",\"doi\":\"10.3389/fnbot.2024.1342126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The object detection method serves as the core technology within the unmanned driving perception module, extensively employed for detecting vehicles, pedestrians, traffic signs, and various objects. However, existing object detection methods still encounter three challenges in intricate unmanned driving scenarios: unsatisfactory performance in multi-scale object detection, inadequate accuracy in detecting small objects, and occurrences of false positives and missed detections in densely occluded environments. Therefore, this study proposes an improved object detection method for unmanned driving, leveraging Transformer architecture to address these challenges. First, a multi-scale Transformer feature extraction method integrated with channel attention is used to enhance the network's capability in extracting features across different scales. Second, a training method incorporating Query Denoising with Gaussian decay was employed to enhance the network's proficiency in learning representations of small objects. Third, a hybrid matching method combining Optimal Transport and Hungarian algorithms was used to facilitate the matching process between predicted and actual values, thereby enriching the network with more informative positive sample features. Experimental evaluations conducted on datasets including KITTI demonstrate that the proposed method achieves 3% higher mean Average Precision (mAP) than that of the existing methodologies.\",\"PeriodicalId\":12628,\"journal\":{\"name\":\"Frontiers in Neurorobotics\",\"volume\":\"107 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neurorobotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3389/fnbot.2024.1342126\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1342126","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Improved object detection method for unmanned driving based on Transformers
The object detection method serves as the core technology within the unmanned driving perception module, extensively employed for detecting vehicles, pedestrians, traffic signs, and various objects. However, existing object detection methods still encounter three challenges in intricate unmanned driving scenarios: unsatisfactory performance in multi-scale object detection, inadequate accuracy in detecting small objects, and occurrences of false positives and missed detections in densely occluded environments. Therefore, this study proposes an improved object detection method for unmanned driving, leveraging Transformer architecture to address these challenges. First, a multi-scale Transformer feature extraction method integrated with channel attention is used to enhance the network's capability in extracting features across different scales. Second, a training method incorporating Query Denoising with Gaussian decay was employed to enhance the network's proficiency in learning representations of small objects. Third, a hybrid matching method combining Optimal Transport and Hungarian algorithms was used to facilitate the matching process between predicted and actual values, thereby enriching the network with more informative positive sample features. Experimental evaluations conducted on datasets including KITTI demonstrate that the proposed method achieves 3% higher mean Average Precision (mAP) than that of the existing methodologies.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.