{"title":"使时间动态具有相关性:大型植物在浅水淡水湖物候复杂性中的作用","authors":"Viktor R. Tóth","doi":"10.1002/eco.2663","DOIUrl":null,"url":null,"abstract":"<p>A multidisciplinary approach demonstrates how submerged macrophytes generate high phenological variability in Hungary's Lake Balaton. A 239-month time series of water chlorophyll indices derived from Landsat 7 imagery from 1999 to 2019 was used. These data facilitated the generation of area-based phenological patterns, which allowed an assessment of phenological variability by correlating chlorophyll index sequences with spatially adjacent values. The results showed that phenological variability was consistently low (below 5%) at the farthest points from the shore, indicating uniform phenological processes in the pelagic zone of Lake Balaton. Conversely, the littoral zone showed almost eight times higher variability, indicating increased diversity in shallow water areas. In particular, extensive macrophyte biomass datasets revealed a direct relationship between increased phenological variability in the littoral zone and macrophyte biomass (Spearman rank correlation: 0.893). This research highlights contrasting phenological patterns between phytoplankton and macrophyte communities, driven by different life cycles, and the possibility of effectively using satellite data to delineate phenological separation within lakes.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Making temporal dynamics relevant: The role of macrophytes in the phenological complexity of a shallow freshwater lake\",\"authors\":\"Viktor R. Tóth\",\"doi\":\"10.1002/eco.2663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A multidisciplinary approach demonstrates how submerged macrophytes generate high phenological variability in Hungary's Lake Balaton. A 239-month time series of water chlorophyll indices derived from Landsat 7 imagery from 1999 to 2019 was used. These data facilitated the generation of area-based phenological patterns, which allowed an assessment of phenological variability by correlating chlorophyll index sequences with spatially adjacent values. The results showed that phenological variability was consistently low (below 5%) at the farthest points from the shore, indicating uniform phenological processes in the pelagic zone of Lake Balaton. Conversely, the littoral zone showed almost eight times higher variability, indicating increased diversity in shallow water areas. In particular, extensive macrophyte biomass datasets revealed a direct relationship between increased phenological variability in the littoral zone and macrophyte biomass (Spearman rank correlation: 0.893). This research highlights contrasting phenological patterns between phytoplankton and macrophyte communities, driven by different life cycles, and the possibility of effectively using satellite data to delineate phenological separation within lakes.</p>\",\"PeriodicalId\":55169,\"journal\":{\"name\":\"Ecohydrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecohydrology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eco.2663\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2663","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Making temporal dynamics relevant: The role of macrophytes in the phenological complexity of a shallow freshwater lake
A multidisciplinary approach demonstrates how submerged macrophytes generate high phenological variability in Hungary's Lake Balaton. A 239-month time series of water chlorophyll indices derived from Landsat 7 imagery from 1999 to 2019 was used. These data facilitated the generation of area-based phenological patterns, which allowed an assessment of phenological variability by correlating chlorophyll index sequences with spatially adjacent values. The results showed that phenological variability was consistently low (below 5%) at the farthest points from the shore, indicating uniform phenological processes in the pelagic zone of Lake Balaton. Conversely, the littoral zone showed almost eight times higher variability, indicating increased diversity in shallow water areas. In particular, extensive macrophyte biomass datasets revealed a direct relationship between increased phenological variability in the littoral zone and macrophyte biomass (Spearman rank correlation: 0.893). This research highlights contrasting phenological patterns between phytoplankton and macrophyte communities, driven by different life cycles, and the possibility of effectively using satellite data to delineate phenological separation within lakes.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.