{"title":"夏季印度洋偶极子的两种特征模式","authors":"Lei Fan, Hui-Huang Fu, Yu Liang","doi":"10.1175/jcli-d-23-0534.1","DOIUrl":null,"url":null,"abstract":"Abstract This study identifies two distinct patterns of the summer Indian Ocean Dipole (IOD) — the coastal IOD and the offshore IOD — named based on the proximity of their eastern pole to Sumatra. Their spatial characteristics, evolutionary mechanisms, relationships with ENSO, impacts on precipitation, and the factors controlling the simulation performances of climate models are discussed. The coastal IOD shares the same eastern pole as the conventional IOD off Sumatra, but its western pole is located in the central southern tropical Indian Ocean (TIO). The offshore IOD shares the conventional western pole off Somalia, but its eastern pole is located in the central southern TIO. Regarding their evolutions, while they initially develop similarly, their later evolutions differ due to their distinct pole locations: the offshore IOD peaks in summer, while the coastal IOD can be sustained into autumn. The coastal IOD correlates to preceding and late ENSO states, but the offshore IOD does not, making it an independent internal mode of TIO. The two IODs affect climate differently, with only the coastal IOD affecting Australian rainfall. Climate models exhibit varied levels of performance in simulating the two IODs. Specifically, a stronger link between spring TIO rainfall and ENSO, as well as stronger southeasterly monsoonal winds in the southern TIO, can enhance the coastal IOD modeling, while a stronger summer Somali jet benefits the simulation of the offshore IOD. Distinguishing these two IODs has implications for accurate diagnosis and prediction of the summer climate surrounding the TIO.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"23 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two Characteristic Patterns of the Summer Indian Ocean Dipole\",\"authors\":\"Lei Fan, Hui-Huang Fu, Yu Liang\",\"doi\":\"10.1175/jcli-d-23-0534.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study identifies two distinct patterns of the summer Indian Ocean Dipole (IOD) — the coastal IOD and the offshore IOD — named based on the proximity of their eastern pole to Sumatra. Their spatial characteristics, evolutionary mechanisms, relationships with ENSO, impacts on precipitation, and the factors controlling the simulation performances of climate models are discussed. The coastal IOD shares the same eastern pole as the conventional IOD off Sumatra, but its western pole is located in the central southern tropical Indian Ocean (TIO). The offshore IOD shares the conventional western pole off Somalia, but its eastern pole is located in the central southern TIO. Regarding their evolutions, while they initially develop similarly, their later evolutions differ due to their distinct pole locations: the offshore IOD peaks in summer, while the coastal IOD can be sustained into autumn. The coastal IOD correlates to preceding and late ENSO states, but the offshore IOD does not, making it an independent internal mode of TIO. The two IODs affect climate differently, with only the coastal IOD affecting Australian rainfall. Climate models exhibit varied levels of performance in simulating the two IODs. Specifically, a stronger link between spring TIO rainfall and ENSO, as well as stronger southeasterly monsoonal winds in the southern TIO, can enhance the coastal IOD modeling, while a stronger summer Somali jet benefits the simulation of the offshore IOD. Distinguishing these two IODs has implications for accurate diagnosis and prediction of the summer climate surrounding the TIO.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0534.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0534.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Two Characteristic Patterns of the Summer Indian Ocean Dipole
Abstract This study identifies two distinct patterns of the summer Indian Ocean Dipole (IOD) — the coastal IOD and the offshore IOD — named based on the proximity of their eastern pole to Sumatra. Their spatial characteristics, evolutionary mechanisms, relationships with ENSO, impacts on precipitation, and the factors controlling the simulation performances of climate models are discussed. The coastal IOD shares the same eastern pole as the conventional IOD off Sumatra, but its western pole is located in the central southern tropical Indian Ocean (TIO). The offshore IOD shares the conventional western pole off Somalia, but its eastern pole is located in the central southern TIO. Regarding their evolutions, while they initially develop similarly, their later evolutions differ due to their distinct pole locations: the offshore IOD peaks in summer, while the coastal IOD can be sustained into autumn. The coastal IOD correlates to preceding and late ENSO states, but the offshore IOD does not, making it an independent internal mode of TIO. The two IODs affect climate differently, with only the coastal IOD affecting Australian rainfall. Climate models exhibit varied levels of performance in simulating the two IODs. Specifically, a stronger link between spring TIO rainfall and ENSO, as well as stronger southeasterly monsoonal winds in the southern TIO, can enhance the coastal IOD modeling, while a stronger summer Somali jet benefits the simulation of the offshore IOD. Distinguishing these two IODs has implications for accurate diagnosis and prediction of the summer climate surrounding the TIO.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.