Hong Wang, Liang Gao, Lei Zhu, Lulu Zhang, Jiahao Wu
{"title":"气候变暖下台风强度的变化:台风 \"曼胡特 \"的数值研究","authors":"Hong Wang, Liang Gao, Lei Zhu, Lulu Zhang, Jiahao Wu","doi":"10.1175/jcli-d-23-0567.1","DOIUrl":null,"url":null,"abstract":"Abstract Accurately assessing cyclone intensity changes due to global warming is crucial for predicting and mitigating sequential hazards. This study develops a high-resolution, fully coupled air-sea model to investigate the impact of global warming on Super Typhoon Mangkhut (2018). A numerical sensitivity analysis is conducted using the Pseudo-Global Warming (PGW) technique based on multiple global climate models (GCMs) from the Coupled Model Intercomparison Project Phases 6 (CMIP6). Under ocean warming scenarios, the increasing average sea surface temperature (SST) by 2.26 °C, 2.44 °C, 3.45 °C, and 4.53 °C result in reductions in minimum sea-level pressure by 9.2 hPa, 10.6 hPa, 15.7 hPa, and 19.4 hPa, respectively, compared to the original state of Typhoon Mangkhut. Rising SST increases turbulent heat flux, to be specific, an average SST increase of 2.26-4.53 °C changes the turbulent heat flux into 177% to 272% of the original value. Besides, stronger winds enhance SST cooling, including upwelling and entrainment, leading to an increase in the mixed layer depth (MLD). Tropical cyclone heat potential (TCHP) tends to be enhanced under the combined influences as the SST rises. An average increase in SST of 2.26 °C, 2.44 °C, 3.45 °C, and 4.53 °C leads to increase in TCHP of 9.94%, 9.85%, 14.67%, and 15.30%, respectively. However, future changes in atmospheric temperature and humidity will moderate typhoon intensification induced by ocean warming. Considering atmospheric conditions, the maximum wind speed decreases by approximately 10% compared to only considering ocean warming. Nevertheless, typhoon intensity is projected to strengthen under future climate change.","PeriodicalId":15472,"journal":{"name":"Journal of Climate","volume":"23 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in the Typhoon Intensity under a Warming Climate: A Numerical Study of Typhoon Mangkhut\",\"authors\":\"Hong Wang, Liang Gao, Lei Zhu, Lulu Zhang, Jiahao Wu\",\"doi\":\"10.1175/jcli-d-23-0567.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Accurately assessing cyclone intensity changes due to global warming is crucial for predicting and mitigating sequential hazards. This study develops a high-resolution, fully coupled air-sea model to investigate the impact of global warming on Super Typhoon Mangkhut (2018). A numerical sensitivity analysis is conducted using the Pseudo-Global Warming (PGW) technique based on multiple global climate models (GCMs) from the Coupled Model Intercomparison Project Phases 6 (CMIP6). Under ocean warming scenarios, the increasing average sea surface temperature (SST) by 2.26 °C, 2.44 °C, 3.45 °C, and 4.53 °C result in reductions in minimum sea-level pressure by 9.2 hPa, 10.6 hPa, 15.7 hPa, and 19.4 hPa, respectively, compared to the original state of Typhoon Mangkhut. Rising SST increases turbulent heat flux, to be specific, an average SST increase of 2.26-4.53 °C changes the turbulent heat flux into 177% to 272% of the original value. Besides, stronger winds enhance SST cooling, including upwelling and entrainment, leading to an increase in the mixed layer depth (MLD). Tropical cyclone heat potential (TCHP) tends to be enhanced under the combined influences as the SST rises. An average increase in SST of 2.26 °C, 2.44 °C, 3.45 °C, and 4.53 °C leads to increase in TCHP of 9.94%, 9.85%, 14.67%, and 15.30%, respectively. However, future changes in atmospheric temperature and humidity will moderate typhoon intensification induced by ocean warming. Considering atmospheric conditions, the maximum wind speed decreases by approximately 10% compared to only considering ocean warming. Nevertheless, typhoon intensity is projected to strengthen under future climate change.\",\"PeriodicalId\":15472,\"journal\":{\"name\":\"Journal of Climate\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Climate\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1175/jcli-d-23-0567.1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jcli-d-23-0567.1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Changes in the Typhoon Intensity under a Warming Climate: A Numerical Study of Typhoon Mangkhut
Abstract Accurately assessing cyclone intensity changes due to global warming is crucial for predicting and mitigating sequential hazards. This study develops a high-resolution, fully coupled air-sea model to investigate the impact of global warming on Super Typhoon Mangkhut (2018). A numerical sensitivity analysis is conducted using the Pseudo-Global Warming (PGW) technique based on multiple global climate models (GCMs) from the Coupled Model Intercomparison Project Phases 6 (CMIP6). Under ocean warming scenarios, the increasing average sea surface temperature (SST) by 2.26 °C, 2.44 °C, 3.45 °C, and 4.53 °C result in reductions in minimum sea-level pressure by 9.2 hPa, 10.6 hPa, 15.7 hPa, and 19.4 hPa, respectively, compared to the original state of Typhoon Mangkhut. Rising SST increases turbulent heat flux, to be specific, an average SST increase of 2.26-4.53 °C changes the turbulent heat flux into 177% to 272% of the original value. Besides, stronger winds enhance SST cooling, including upwelling and entrainment, leading to an increase in the mixed layer depth (MLD). Tropical cyclone heat potential (TCHP) tends to be enhanced under the combined influences as the SST rises. An average increase in SST of 2.26 °C, 2.44 °C, 3.45 °C, and 4.53 °C leads to increase in TCHP of 9.94%, 9.85%, 14.67%, and 15.30%, respectively. However, future changes in atmospheric temperature and humidity will moderate typhoon intensification induced by ocean warming. Considering atmospheric conditions, the maximum wind speed decreases by approximately 10% compared to only considering ocean warming. Nevertheless, typhoon intensity is projected to strengthen under future climate change.
期刊介绍:
The Journal of Climate (JCLI) (ISSN: 0894-8755; eISSN: 1520-0442) publishes research that advances basic understanding of the dynamics and physics of the climate system on large spatial scales, including variability of the atmosphere, oceans, land surface, and cryosphere; past, present, and projected future changes in the climate system; and climate simulation and prediction.