利用事件行为模型进行复杂事件识别和异常检测

IF 3.7 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Min-Chang Liu, Fang-Rong Hsu, Chua-Huang Huang
{"title":"利用事件行为模型进行复杂事件识别和异常检测","authors":"Min-Chang Liu, Fang-Rong Hsu, Chua-Huang Huang","doi":"10.1007/s10044-024-01275-y","DOIUrl":null,"url":null,"abstract":"<p>The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"11 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex event recognition and anomaly detection with event behavior model\",\"authors\":\"Min-Chang Liu, Fang-Rong Hsu, Chua-Huang Huang\",\"doi\":\"10.1007/s10044-024-01275-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01275-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01275-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

复杂事件处理的概念是指跟踪和分析一系列相关事件并从中得出结论的过程。对于这类系统来说,复杂事件识别是必不可少的。复杂事件识别的目的是识别有意义的事件或模式,并构建处理规则对其做出反应。研究人员使用识别语言或模型对复杂事件模式的识别进行了大量研究。然而,人们很少讨论复杂事件识别过程的完整性。虽然事件的现实性是不确定的,但用于建模和解释复杂事件中或有信息相互作用的结构仍不清楚。在本研究中,我们重点开发了一个解决这些问题的通用框架,并展示了基于模型的方法在复杂事件识别中表示时空维度和因果关系的适用性。在本文中,我们从过程的角度提出了一种用于复杂事件识别的事件行为模型。所开发的模型可以检测和解释与复杂事件相关的异常情况。我们通过实验对模型的性能进行了评估。结果显示,重叠事件中的时间操作对事件模式识别至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complex event recognition and anomaly detection with event behavior model

Complex event recognition and anomaly detection with event behavior model

The concept of complex event processing refers to the process of tracking and analyzing a set of related events and drawing conclusions from them. For such systems, complex event recognition is essential. The object of complex event recognition is to recognize meaningful events or patterns and construct processing rules to respond to them. Researchers have conducted numerous studies on the recognition of complex event patterns by using recognition languages or models. However, the completeness of the process in complex event recognition has rarely been discussed. Although the reality of the event is uncertain, the structure for modeling and explaining complex event interactions of contingent information remains unclear. In this study, we focused on developing a general framework for addressing these problems and demonstrating the applicability of model-based approaches to represent spatio-temporal dimensions and causality in complex event recognition. In this paper, we propose an event behavior model for complex event recognition from a process perspective. The developed model could detect and explain anomalies associated with complex events. An experiment was conducted to evaluate the model performance. The results revealed that temporal operations within overlapping events were crucial to event pattern recognition.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Analysis and Applications
Pattern Analysis and Applications 工程技术-计算机:人工智能
CiteScore
7.40
自引率
2.60%
发文量
76
审稿时长
13.5 months
期刊介绍: The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信