{"title":"接受美国量子信息教育的差距","authors":"Josephine C. Meyer, Gina Passante, Bethany Wilcox","doi":"10.1103/physrevphyseducres.20.010131","DOIUrl":null,"url":null,"abstract":"Driven in large part by the National Quantum Initiative Act of 2018, quantum information science (QIS) coursework and degree programs are rapidly spreading across U.S. institutions. Yet prior work suggests that access to quantum workforce education is unequally distributed, disproportionately benefiting students at private research-focused institutions whose student bodies are unrepresentative of U.S. higher education as a whole. We use regression analysis to analyze the distribution of QIS coursework across 456 institutions of higher learning as of Fall 2022, identifying statistically significant disparities across institutions in particular along the axes of institution classification, funding, and geographic distribution suggesting today’s QIS education programs are largely failing to reach low-income and rural students. We also conduct a brief analysis of the distribution of emerging dedicated QIS degree programs, discovering much the same trends. We conclude with a discussion of implications for educators, policymakers, and education researchers including specific policy recommendations to direct investments in QIS education to schools serving low-income and rural students, leverage existing grassroots diversity and inclusion initiatives that have arisen within the quantum community, and update and modernize procedures for collecting QIS educational data to better track these trends.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"28 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disparities in access to U.S. quantum information education\",\"authors\":\"Josephine C. Meyer, Gina Passante, Bethany Wilcox\",\"doi\":\"10.1103/physrevphyseducres.20.010131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Driven in large part by the National Quantum Initiative Act of 2018, quantum information science (QIS) coursework and degree programs are rapidly spreading across U.S. institutions. Yet prior work suggests that access to quantum workforce education is unequally distributed, disproportionately benefiting students at private research-focused institutions whose student bodies are unrepresentative of U.S. higher education as a whole. We use regression analysis to analyze the distribution of QIS coursework across 456 institutions of higher learning as of Fall 2022, identifying statistically significant disparities across institutions in particular along the axes of institution classification, funding, and geographic distribution suggesting today’s QIS education programs are largely failing to reach low-income and rural students. We also conduct a brief analysis of the distribution of emerging dedicated QIS degree programs, discovering much the same trends. We conclude with a discussion of implications for educators, policymakers, and education researchers including specific policy recommendations to direct investments in QIS education to schools serving low-income and rural students, leverage existing grassroots diversity and inclusion initiatives that have arisen within the quantum community, and update and modernize procedures for collecting QIS educational data to better track these trends.\",\"PeriodicalId\":54296,\"journal\":{\"name\":\"Physical Review Physics Education Research\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Physics Education Research\",\"FirstCategoryId\":\"95\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevphyseducres.20.010131\",\"RegionNum\":2,\"RegionCategory\":\"教育学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EDUCATION & EDUCATIONAL RESEARCH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010131","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
Disparities in access to U.S. quantum information education
Driven in large part by the National Quantum Initiative Act of 2018, quantum information science (QIS) coursework and degree programs are rapidly spreading across U.S. institutions. Yet prior work suggests that access to quantum workforce education is unequally distributed, disproportionately benefiting students at private research-focused institutions whose student bodies are unrepresentative of U.S. higher education as a whole. We use regression analysis to analyze the distribution of QIS coursework across 456 institutions of higher learning as of Fall 2022, identifying statistically significant disparities across institutions in particular along the axes of institution classification, funding, and geographic distribution suggesting today’s QIS education programs are largely failing to reach low-income and rural students. We also conduct a brief analysis of the distribution of emerging dedicated QIS degree programs, discovering much the same trends. We conclude with a discussion of implications for educators, policymakers, and education researchers including specific policy recommendations to direct investments in QIS education to schools serving low-income and rural students, leverage existing grassroots diversity and inclusion initiatives that have arisen within the quantum community, and update and modernize procedures for collecting QIS educational data to better track these trends.
期刊介绍:
PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to:
Educational policy
Instructional strategies, and materials development
Research methodology
Epistemology, attitudes, and beliefs
Learning environment
Scientific reasoning and problem solving
Diversity and inclusion
Learning theory
Student participation
Faculty and teacher professional development