与凸函数相关的广义数值范围和数值半径有关的若干不等式

IF 1.3 4区 数学 Q1 MATHEMATICS
Feras Bani-Ahmad, M. H. M. Rashid
{"title":"与凸函数相关的广义数值范围和数值半径有关的若干不等式","authors":"Feras Bani-Ahmad, M. H. M. Rashid","doi":"10.1155/2024/4087305","DOIUrl":null,"url":null,"abstract":"In this paper, we delve into the intricate connections between the numerical ranges of specific operators and their transformations using a convex function. Furthermore, we derive inequalities related to the numerical radius. These relationships and inequalities are built upon well-established principles of convexity, which are applicable to non-negative real numbers and operator inequalities. To be more precise, our investigation yields the following outcome: consider the operators <svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 9.2729 8.68572\" width=\"9.2729pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 7.94191 8.68572\" width=\"7.94191pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> both of which are positive and have spectra within the interval <span><svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.706 11.439\" width=\"17.706pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,14.742,0)\"></path></g></svg><span></span><span><svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"19.835183800000003 -9.28833 17.521 11.439\" width=\"17.521pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.885,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,32.693,0)\"></path></g></svg>,</span></span> denoted as <svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 25.6752 11.5564\" width=\"25.6752pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,7.347,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.845,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,20.98,0)\"></path></g></svg> and <span><svg height=\"11.5564pt\" style=\"vertical-align:-2.26807pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 24.3442 11.5564\" width=\"24.3442pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-240\"></use></g><g transform=\"matrix(.013,0,0,-0.013,7.347,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.845,0)\"><use xlink:href=\"#g113-67\"></use></g><g transform=\"matrix(.013,0,0,-0.013,19.658,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span> In addition, let us introduce two monotone continuous functions, namely, <svg height=\"9.39034pt\" style=\"vertical-align:-3.42943pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 7.52435 9.39034\" width=\"7.52435pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and <span><svg height=\"9.49473pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 6.83278 9.49473\" width=\"6.83278pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> defined on the interval <span><svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 17.706 11.439\" width=\"17.706pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-92\"></use></g><g transform=\"matrix(.013,0,0,-0.013,4.485,0)\"><use xlink:href=\"#g113-110\"></use></g><g transform=\"matrix(.013,0,0,-0.013,14.742,0)\"><use xlink:href=\"#g113-45\"></use></g></svg><span></span><span><svg height=\"11.439pt\" style=\"vertical-align:-2.15067pt\" version=\"1.1\" viewbox=\"19.835183800000003 -9.28833 17.521 11.439\" width=\"17.521pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,19.885,0)\"><use xlink:href=\"#g113-78\"></use></g><g transform=\"matrix(.013,0,0,-0.013,32.693,0)\"><use xlink:href=\"#g113-94\"></use></g></svg>.</span></span> Let <svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 8.47692 12.7178\" width=\"8.47692pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> be a positive, increasing, convex function possessing a supermultiplicative property, which means that for all real numbers <svg height=\"8.02022pt\" style=\"vertical-align:-0.2063999pt\" version=\"1.1\" viewbox=\"-0.0498162 -7.81382 4.54925 8.02022\" width=\"4.54925pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg> and <span><svg height=\"6.1673pt\" style=\"vertical-align:-0.2063904pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.96091 4.9929 6.1673\" width=\"4.9929pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g></svg>,</span> we have <span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 37.38 12.7178\" width=\"37.38pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,8.352,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.85,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,16.815,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,21.619,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,29.749,0)\"></path></g></svg><span></span><span><svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"40.9621838 -9.28833 44.344 12.7178\" width=\"44.344pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,41.012,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,49.364,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,53.862,0)\"><use xlink:href=\"#g113-117\"></use></g><g transform=\"matrix(.013,0,0,-0.013,58.295,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,62.793,0)\"><use xlink:href=\"#g113-103\"></use></g><g transform=\"matrix(.013,0,0,-0.013,71.145,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,75.643,0)\"><use xlink:href=\"#g113-116\"></use></g><g transform=\"matrix(.013,0,0,-0.013,80.518,0)\"><use xlink:href=\"#g113-42\"></use></g></svg>.</span></span> Under these specified conditions, we establish the following inequality: for all <span><svg height=\"9.46863pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 17.503 9.46863\" width=\"17.503pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,9.872,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><svg height=\"9.46863pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"21.085183800000003 -8.34882 17.165 9.46863\" width=\"17.165pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,21.135,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,30.669,0)\"><use xlink:href=\"#g117-93\"></use></g></svg><span></span><span><svg height=\"9.46863pt\" style=\"vertical-align:-1.11981pt\" version=\"1.1\" viewbox=\"41.8821838 -8.34882 6.465 9.46863\" width=\"6.465pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,41.932,0)\"></path></g></svg>,</span></span> this outcome highlights the intricate relationship between the numerical range of the expression <svg height=\"15.0208pt\" style=\"vertical-align:-3.429399pt\" version=\"1.1\" viewbox=\"-0.0498162 -11.5914 61.762 15.0208\" width=\"61.762pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-104\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,7.398,-5.741)\"><use xlink:href=\"#g185-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,12.043,0)\"><use xlink:href=\"#g113-41\"></use></g><g transform=\"matrix(.013,0,0,-0.013,16.541,0)\"><use xlink:href=\"#g113-66\"></use></g><g transform=\"matrix(.013,0,0,-0.013,25.676,0)\"><use xlink:href=\"#g113-42\"></use></g><g transform=\"matrix(.013,0,0,-0.013,30.174,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,40.119,0)\"><use xlink:href=\"#g113-105\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,46.828,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,51.259,-5.741)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,56.819,-5.741)\"><use xlink:href=\"#g185-47\"></use></g></svg> when transformed by the convex function <svg height=\"12.7178pt\" style=\"vertical-align:-3.42947pt\" version=\"1.1\" viewbox=\"-0.0498162 -9.28833 8.47692 12.7178\" width=\"8.47692pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-103\"></use></g></svg> and the norm of <span><svg height=\"8.68572pt\" style=\"vertical-align:-0.0498209pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 10.0819 8.68572\" width=\"10.0819pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-89\"></use></g></svg>.</span> Importantly, this inequality holds true for a broad range of values of <span><svg height=\"6.20643pt\" style=\"vertical-align:-0.2585797pt\" version=\"1.1\" viewbox=\"-0.0498162 -5.94785 6.02377 6.20643\" width=\"6.02377pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g185-47\"></use></g></svg>.</span> Furthermore, we provide supportive examples to validate these results.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"60 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certain Inequalities Related to the Generalized Numeric Range and Numeric Radius That Are Associated with Convex Functions\",\"authors\":\"Feras Bani-Ahmad, M. H. M. Rashid\",\"doi\":\"10.1155/2024/4087305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we delve into the intricate connections between the numerical ranges of specific operators and their transformations using a convex function. Furthermore, we derive inequalities related to the numerical radius. These relationships and inequalities are built upon well-established principles of convexity, which are applicable to non-negative real numbers and operator inequalities. To be more precise, our investigation yields the following outcome: consider the operators <svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 9.2729 8.68572\\\" width=\\\"9.2729pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> and <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 7.94191 8.68572\\\" width=\\\"7.94191pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> both of which are positive and have spectra within the interval <span><svg height=\\\"11.439pt\\\" style=\\\"vertical-align:-2.15067pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.706 11.439\\\" width=\\\"17.706pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,4.485,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,14.742,0)\\\"></path></g></svg><span></span><span><svg height=\\\"11.439pt\\\" style=\\\"vertical-align:-2.15067pt\\\" version=\\\"1.1\\\" viewbox=\\\"19.835183800000003 -9.28833 17.521 11.439\\\" width=\\\"17.521pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,19.885,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,32.693,0)\\\"></path></g></svg>,</span></span> denoted as <svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 25.6752 11.5564\\\" width=\\\"25.6752pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,7.347,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,11.845,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,20.98,0)\\\"></path></g></svg> and <span><svg height=\\\"11.5564pt\\\" style=\\\"vertical-align:-2.26807pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 24.3442 11.5564\\\" width=\\\"24.3442pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-240\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,7.347,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,11.845,0)\\\"><use xlink:href=\\\"#g113-67\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,19.658,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span> In addition, let us introduce two monotone continuous functions, namely, <svg height=\\\"9.39034pt\\\" style=\\\"vertical-align:-3.42943pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 7.52435 9.39034\\\" width=\\\"7.52435pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> and <span><svg height=\\\"9.49473pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 6.83278 9.49473\\\" width=\\\"6.83278pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> defined on the interval <span><svg height=\\\"11.439pt\\\" style=\\\"vertical-align:-2.15067pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 17.706 11.439\\\" width=\\\"17.706pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-92\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,4.485,0)\\\"><use xlink:href=\\\"#g113-110\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,14.742,0)\\\"><use xlink:href=\\\"#g113-45\\\"></use></g></svg><span></span><span><svg height=\\\"11.439pt\\\" style=\\\"vertical-align:-2.15067pt\\\" version=\\\"1.1\\\" viewbox=\\\"19.835183800000003 -9.28833 17.521 11.439\\\" width=\\\"17.521pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,19.885,0)\\\"><use xlink:href=\\\"#g113-78\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,32.693,0)\\\"><use xlink:href=\\\"#g113-94\\\"></use></g></svg>.</span></span> Let <svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 8.47692 12.7178\\\" width=\\\"8.47692pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> be a positive, increasing, convex function possessing a supermultiplicative property, which means that for all real numbers <svg height=\\\"8.02022pt\\\" style=\\\"vertical-align:-0.2063999pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -7.81382 4.54925 8.02022\\\" width=\\\"4.54925pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg> and <span><svg height=\\\"6.1673pt\\\" style=\\\"vertical-align:-0.2063904pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.96091 4.9929 6.1673\\\" width=\\\"4.9929pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g></svg>,</span> we have <span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 37.38 12.7178\\\" width=\\\"37.38pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,8.352,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.85,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,16.815,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,21.619,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,29.749,0)\\\"></path></g></svg><span></span><span><svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"40.9621838 -9.28833 44.344 12.7178\\\" width=\\\"44.344pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,41.012,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,49.364,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,53.862,0)\\\"><use xlink:href=\\\"#g113-117\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,58.295,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,62.793,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,71.145,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,75.643,0)\\\"><use xlink:href=\\\"#g113-116\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,80.518,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g></svg>.</span></span> Under these specified conditions, we establish the following inequality: for all <span><svg height=\\\"9.46863pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.34882 17.503 9.46863\\\" width=\\\"17.503pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,9.872,0)\\\"><use xlink:href=\\\"#g117-93\\\"></use></g></svg><span></span><svg height=\\\"9.46863pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"21.085183800000003 -8.34882 17.165 9.46863\\\" width=\\\"17.165pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,21.135,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,30.669,0)\\\"><use xlink:href=\\\"#g117-93\\\"></use></g></svg><span></span><span><svg height=\\\"9.46863pt\\\" style=\\\"vertical-align:-1.11981pt\\\" version=\\\"1.1\\\" viewbox=\\\"41.8821838 -8.34882 6.465 9.46863\\\" width=\\\"6.465pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,41.932,0)\\\"></path></g></svg>,</span></span> this outcome highlights the intricate relationship between the numerical range of the expression <svg height=\\\"15.0208pt\\\" style=\\\"vertical-align:-3.429399pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -11.5914 61.762 15.0208\\\" width=\\\"61.762pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-104\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,7.398,-5.741)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,12.043,0)\\\"><use xlink:href=\\\"#g113-41\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,16.541,0)\\\"><use xlink:href=\\\"#g113-66\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,25.676,0)\\\"><use xlink:href=\\\"#g113-42\\\"></use></g><g transform=\\\"matrix(.013,0,0,-0.013,30.174,0)\\\"></path></g><g transform=\\\"matrix(.013,0,0,-0.013,40.119,0)\\\"><use xlink:href=\\\"#g113-105\\\"></use></g><g transform=\\\"matrix(.0091,0,0,-0.0091,46.828,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,51.259,-5.741)\\\"></path></g><g transform=\\\"matrix(.0091,0,0,-0.0091,56.819,-5.741)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g></svg> when transformed by the convex function <svg height=\\\"12.7178pt\\\" style=\\\"vertical-align:-3.42947pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -9.28833 8.47692 12.7178\\\" width=\\\"8.47692pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-103\\\"></use></g></svg> and the norm of <span><svg height=\\\"8.68572pt\\\" style=\\\"vertical-align:-0.0498209pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -8.6359 10.0819 8.68572\\\" width=\\\"10.0819pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g113-89\\\"></use></g></svg>.</span> Importantly, this inequality holds true for a broad range of values of <span><svg height=\\\"6.20643pt\\\" style=\\\"vertical-align:-0.2585797pt\\\" version=\\\"1.1\\\" viewbox=\\\"-0.0498162 -5.94785 6.02377 6.20643\\\" width=\\\"6.02377pt\\\" xmlns=\\\"http://www.w3.org/2000/svg\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g transform=\\\"matrix(.013,0,0,-0.013,0,0)\\\"><use xlink:href=\\\"#g185-47\\\"></use></g></svg>.</span> Furthermore, we provide supportive examples to validate these results.\",\"PeriodicalId\":54214,\"journal\":{\"name\":\"Journal of Mathematics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/4087305\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/4087305","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们深入探讨了特定算子的数值范围与利用凸函数对它们进行变换之间的复杂联系。此外,我们还推导出与数值半径相关的不等式。这些关系和不等式建立在凸性的既定原则之上,适用于非负实数和算子不等式。更确切地说,我们的研究得出以下结果:考虑算子 和 ,它们都是正数,并且在区间 内有谱,表示为 和 。 此外,让我们引入两个单调连续函数,即 ,和 ,定义在区间 上。假设 是一个正的、递增的凸函数,具有超乘法性质,即对于所有实数 和 ,我们有 。在这些特定条件下,我们建立了下面的不等式:对于所有 的 ,这个结果突出了表达式在凸函数变换时的数值范围与 的规范之间错综复杂的关系。 重要的是,这个不等式在 . 的广泛取值范围内都成立。 此外,我们还提供了支持性的例子来验证这些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certain Inequalities Related to the Generalized Numeric Range and Numeric Radius That Are Associated with Convex Functions
In this paper, we delve into the intricate connections between the numerical ranges of specific operators and their transformations using a convex function. Furthermore, we derive inequalities related to the numerical radius. These relationships and inequalities are built upon well-established principles of convexity, which are applicable to non-negative real numbers and operator inequalities. To be more precise, our investigation yields the following outcome: consider the operators and , both of which are positive and have spectra within the interval , denoted as and . In addition, let us introduce two monotone continuous functions, namely, and , defined on the interval . Let be a positive, increasing, convex function possessing a supermultiplicative property, which means that for all real numbers and , we have . Under these specified conditions, we establish the following inequality: for all , this outcome highlights the intricate relationship between the numerical range of the expression when transformed by the convex function and the norm of . Importantly, this inequality holds true for a broad range of values of . Furthermore, we provide supportive examples to validate these results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信