不同全球变暖水平下中国极端高温预警指标的变化

IF 6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Yuxia Zhang, Ying Sun, Ting Hu
{"title":"不同全球变暖水平下中国极端高温预警指标的变化","authors":"Yuxia Zhang, Ying Sun, Ting Hu","doi":"10.1007/s11430-023-1299-1","DOIUrl":null,"url":null,"abstract":"<p>High temperature warning indicators play a pivotal role in meteorological departments, serving as crucial criteria for issuing warnings that guide both social production and daily life. Despite their importance, limited studies have explored the relationship between different global warming levels and changes in high temperature warning indicators. In this study, we analyze data from 2,419 meteorological stations over China and utilize the Coupled Model Intercomparison Project Phase 6 (CMIP6) models to examine historical changes in high temperature warning indicators used by the China Meteorological Administration. We evaluate model performance and estimate future changes in these indicators using an annual cycle bias correction method. The results indicate that since 1961, the number of high temperature days (TX35d and TX40d) and length of season (TX40d and TX40l) with daily maximum temperature reaching or exceeding 35°C and 40°C have increased over China. The intensity of high temperatures (TXx) has strengthened and the geographical extent affected by high temperatures has expanded. In 2022, the occurrence of 40°C high temperatures surges, with Eastern China experiencing a two-day increase in TX40d and an extended seasonal length in TX40l by over five days. While CMIP6 models have underestimated the high temperature indictors associated with 35°C during historical periods, notable difference is not observed between the models and observations for TX40d and TX40l, given their rare occurrence. However, future projections, after bias correction, indicate that the increasing trends for 35°C and 40°C high temperature days and length of season become more pronounced than the raw projection, suggesting a more severe increase than that anticipated originally. As global warming intensifies, the high temperature days and length of season are projected to increase non-linearly, while the intensity of high temperatures is expected to increase linearly. For every 1°C increase in global temperature, the intensity is projected to rise by approximately 1.4°C. The impact of high temperatures is expanding, with the major hotspot for China located in the eastern and northwestern regions. Under 5°C global warming, certain regions in China may experience prolonged extreme high temperatures. For instance, 40°C high temperature days in areas like North China and the Yangtze River Basin could increase by about 32 d, and the length of season could extend by approximately 100 d.</p>","PeriodicalId":21651,"journal":{"name":"Science China Earth Sciences","volume":"61 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Changes in extreme high temperature warning indicators over China under different global warming levels\",\"authors\":\"Yuxia Zhang, Ying Sun, Ting Hu\",\"doi\":\"10.1007/s11430-023-1299-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High temperature warning indicators play a pivotal role in meteorological departments, serving as crucial criteria for issuing warnings that guide both social production and daily life. Despite their importance, limited studies have explored the relationship between different global warming levels and changes in high temperature warning indicators. In this study, we analyze data from 2,419 meteorological stations over China and utilize the Coupled Model Intercomparison Project Phase 6 (CMIP6) models to examine historical changes in high temperature warning indicators used by the China Meteorological Administration. We evaluate model performance and estimate future changes in these indicators using an annual cycle bias correction method. The results indicate that since 1961, the number of high temperature days (TX35d and TX40d) and length of season (TX40d and TX40l) with daily maximum temperature reaching or exceeding 35°C and 40°C have increased over China. The intensity of high temperatures (TXx) has strengthened and the geographical extent affected by high temperatures has expanded. In 2022, the occurrence of 40°C high temperatures surges, with Eastern China experiencing a two-day increase in TX40d and an extended seasonal length in TX40l by over five days. While CMIP6 models have underestimated the high temperature indictors associated with 35°C during historical periods, notable difference is not observed between the models and observations for TX40d and TX40l, given their rare occurrence. However, future projections, after bias correction, indicate that the increasing trends for 35°C and 40°C high temperature days and length of season become more pronounced than the raw projection, suggesting a more severe increase than that anticipated originally. As global warming intensifies, the high temperature days and length of season are projected to increase non-linearly, while the intensity of high temperatures is expected to increase linearly. For every 1°C increase in global temperature, the intensity is projected to rise by approximately 1.4°C. The impact of high temperatures is expanding, with the major hotspot for China located in the eastern and northwestern regions. Under 5°C global warming, certain regions in China may experience prolonged extreme high temperatures. For instance, 40°C high temperature days in areas like North China and the Yangtze River Basin could increase by about 32 d, and the length of season could extend by approximately 100 d.</p>\",\"PeriodicalId\":21651,\"journal\":{\"name\":\"Science China Earth Sciences\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s11430-023-1299-1\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s11430-023-1299-1","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高温预警指标在气象部门起着举足轻重的作用,是发布预警的重要标准,对社会生产和日常生活都有指导意义。尽管高温预警指标非常重要,但目前探讨不同全球变暖水平与高温预警指标变化之间关系的研究还很有限。在本研究中,我们分析了中国 2419 个气象站的数据,并利用耦合模式相互比较项目第六阶段(CMIP6)模式研究了中国气象局使用的高温预警指标的历史变化。我们对模型性能进行了评估,并采用年周期偏差校正方法对这些指标的未来变化进行了估计。结果表明,自 1961 年以来,中国各地日最高气温达到或超过 35°C 和 40°C 的高温日数(TX35d 和 TX40d)和季长(TX40d 和 TX40l)均有所增加。高温强度(TXx)增强,受高温影响的地域范围扩大。2022 年,40°C 高温发生率激增,华东地区的 TX40d 增加了两天,TX40l 的季节长度延长了五天以上。虽然CMIP6模式低估了历史同期与35°C相关的高温指标,但由于TX40d和TX40l很少出现,因此模式与观测值之间没有观测到明显差异。然而,经过偏差修正后的未来预测表明,35℃和 40℃高温日数和季节长度的增加趋势比原始预测更加明显,这表明高温的增加比最初预计的更加严重。随着全球变暖的加剧,预计高温日数和季节长度将非线性增加,而高温强度将线性增加。全球气温每上升 1°C,高温强度预计将上升约 1.4°C。高温的影响范围正在扩大,中国的主要热点位于东部和西北部地区。在全球变暖 5°C 的情况下,中国某些地区可能会出现长时间的极端高温。例如,华北、长江流域等地区 40℃高温日数可能增加约 32 天,季节长度可能延长约 100 天。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Changes in extreme high temperature warning indicators over China under different global warming levels

High temperature warning indicators play a pivotal role in meteorological departments, serving as crucial criteria for issuing warnings that guide both social production and daily life. Despite their importance, limited studies have explored the relationship between different global warming levels and changes in high temperature warning indicators. In this study, we analyze data from 2,419 meteorological stations over China and utilize the Coupled Model Intercomparison Project Phase 6 (CMIP6) models to examine historical changes in high temperature warning indicators used by the China Meteorological Administration. We evaluate model performance and estimate future changes in these indicators using an annual cycle bias correction method. The results indicate that since 1961, the number of high temperature days (TX35d and TX40d) and length of season (TX40d and TX40l) with daily maximum temperature reaching or exceeding 35°C and 40°C have increased over China. The intensity of high temperatures (TXx) has strengthened and the geographical extent affected by high temperatures has expanded. In 2022, the occurrence of 40°C high temperatures surges, with Eastern China experiencing a two-day increase in TX40d and an extended seasonal length in TX40l by over five days. While CMIP6 models have underestimated the high temperature indictors associated with 35°C during historical periods, notable difference is not observed between the models and observations for TX40d and TX40l, given their rare occurrence. However, future projections, after bias correction, indicate that the increasing trends for 35°C and 40°C high temperature days and length of season become more pronounced than the raw projection, suggesting a more severe increase than that anticipated originally. As global warming intensifies, the high temperature days and length of season are projected to increase non-linearly, while the intensity of high temperatures is expected to increase linearly. For every 1°C increase in global temperature, the intensity is projected to rise by approximately 1.4°C. The impact of high temperatures is expanding, with the major hotspot for China located in the eastern and northwestern regions. Under 5°C global warming, certain regions in China may experience prolonged extreme high temperatures. For instance, 40°C high temperature days in areas like North China and the Yangtze River Basin could increase by about 32 d, and the length of season could extend by approximately 100 d.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Earth Sciences
Science China Earth Sciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
9.60
自引率
5.30%
发文量
135
审稿时长
3-8 weeks
期刊介绍: Science China Earth Sciences, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信