基于改进的 Yolov7 目标检测的遥感图像定位

IF 3.7 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Cui Li, Jiao Wang
{"title":"基于改进的 Yolov7 目标检测的遥感图像定位","authors":"Cui Li, Jiao Wang","doi":"10.1007/s10044-024-01276-x","DOIUrl":null,"url":null,"abstract":"<p>Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a \"three-dimensional data cube\", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"11 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remote sensing image location based on improved Yolov7 target detection\",\"authors\":\"Cui Li, Jiao Wang\",\"doi\":\"10.1007/s10044-024-01276-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a \\\"three-dimensional data cube\\\", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01276-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01276-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

目标检测作为计算机视觉领域的核心问题,被广泛应用于人脸识别、车牌识别、安全防护、无人驾驶等诸多关键领域。虽然其检测速度和精度不断刷新纪录,但遥感图像的目标检测仍存在诸多挑战和困难,需要进一步深入研究和探索。遥感图像可以看作是一个 "三维数据立方体",其背景信息较为复杂,目标物密集且体积小,天气干扰因素较为严重。这些因素导致遥感图像目标检测过程中定位误差大、检测精度低。针对遥感图像中高密度、小目标假阴性率高的问题,提出了改进的 YOLOv7 目标检测模型。首先,引入 GAM 注意机制,提出全局调度机制,通过减少信息还原和扩展全局交互表征来提高深度神经网络的性能,从而增强网络对目标的灵敏度。其次,将原 Yolov7 网络模型中的损失函数 CIoU 替换为 SIoU,旨在优化损失函数,减少损失,提高网络的泛化能力。最后,该模型在公开的 RSOD 遥感数据集上进行了测试,并在 Okahublot FloW-Img 子数据集上验证了其泛化能力。结果表明,与原始模型相比,改进后的 Yolov7 网络模型检测物体的准确率(MAP@0.5)分别提高了 1.7 个百分点和 1.5 个百分点,有效提高了遥感图像中小目标的检测准确率,解决了遥感图像中小目标的漏检问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Remote sensing image location based on improved Yolov7 target detection

Remote sensing image location based on improved Yolov7 target detection

Target detection, as a core issue in the field of computer vision, is widely applied in many key areas such as face recognition, license plate recognition, security protection, and driverless driving. Although its detection speed and accuracy continue to break records, there are still many challenges and difficulties in target detection of remote sensing images, which require further in-depth research and exploration. Remote sensing images can be regarded as a "three-dimensional data cube", with more complex background information, dense and small object targets, and more severe weather interference factors. These factors lead to large positioning errors and low detection accuracy in the target detection process of remote sensing images. An improved YOLOv7 object detection model is proposed to address the problem of high false negative rate for dense and small objects in remote sensing images. Firstly, the GAM attention mechanism is introduced, and a global scheduling mechanism is proposed to improve the performance of deep neural networks by reducing information reduction and expanding global interaction representations, thus enhancing the network's sensitivity to targets. Secondly, the loss function CIoU in the original Yolov7 network model is replaced by SIoU, aiming to optimize the loss function, reduce losses, and improve the generalization of the network. Finally, the model is tested on the public available RSOD remote sensing dataset, and its generalization is verified on the Okahublot FloW-Img sub-dataset. The results showed that the accuracy (MAP@0.5) of detecting objects improved by 1.7 percentage points and 1.5 percentage points respectively for the improved Yolov7 network model compared to the original model, effectively improves the accuracy of detecting small targets in remote sensing images and solves the problem of leakage detection of small targets in remote sensing images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Analysis and Applications
Pattern Analysis and Applications 工程技术-计算机:人工智能
CiteScore
7.40
自引率
2.60%
发文量
76
审稿时长
13.5 months
期刊介绍: The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信