在酸性电解质中利用铠甲状铁纳米颗粒/多孔掺氮碳实现高效的二氧化碳电化学还原

IF 9.2 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Green Chemistry Pub Date : 2024-05-20 DOI:10.1039/d4gc00060a
Wenli Hao , Li Peng , Rongxing Qiu , Tianwei Xue , Ruiqing Li , Qing-Na Zheng , Jia Yu , Tongxin Qiao , Linxiao Cui , Yuzhong Su , Yanzhen Hong , Hongtao Wang , Shuliang Yang , Jun Li
{"title":"在酸性电解质中利用铠甲状铁纳米颗粒/多孔掺氮碳实现高效的二氧化碳电化学还原","authors":"Wenli Hao ,&nbsp;Li Peng ,&nbsp;Rongxing Qiu ,&nbsp;Tianwei Xue ,&nbsp;Ruiqing Li ,&nbsp;Qing-Na Zheng ,&nbsp;Jia Yu ,&nbsp;Tongxin Qiao ,&nbsp;Linxiao Cui ,&nbsp;Yuzhong Su ,&nbsp;Yanzhen Hong ,&nbsp;Hongtao Wang ,&nbsp;Shuliang Yang ,&nbsp;Jun Li","doi":"10.1039/d4gc00060a","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical reduction of CO<sub>2</sub> presents a persistent challenge in achieving high selectivity and stability, particularly in acidic electrolytes. Here, we successfully engineer an efficient armor-like catalyst, comprising Fe nanoparticles within nitrogen-doped carbon (Fe@NC) based on a solvent-free mechanochemistry method followed by pyrolysis. Porous nitrogen-doped carbon shells served as an effective protective layer for the Fe nanoparticles, facilitating the conversion of CO<sub>2</sub> to CO with an impressive FE<sub>CO</sub> of 99.0% in acidic electrolytes. As a result, the armored Fe@NC sustained its catalytic activity throughout 14 hours electrolysis period.</p></div>","PeriodicalId":78,"journal":{"name":"Green Chemistry","volume":"26 10","pages":"Pages 5832-5837"},"PeriodicalIF":9.2000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient electrochemical CO2 reduction in acidic electrolytes using armor-like iron nanoparticles/porous nitrogen-doped carbon†\",\"authors\":\"Wenli Hao ,&nbsp;Li Peng ,&nbsp;Rongxing Qiu ,&nbsp;Tianwei Xue ,&nbsp;Ruiqing Li ,&nbsp;Qing-Na Zheng ,&nbsp;Jia Yu ,&nbsp;Tongxin Qiao ,&nbsp;Linxiao Cui ,&nbsp;Yuzhong Su ,&nbsp;Yanzhen Hong ,&nbsp;Hongtao Wang ,&nbsp;Shuliang Yang ,&nbsp;Jun Li\",\"doi\":\"10.1039/d4gc00060a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical reduction of CO<sub>2</sub> presents a persistent challenge in achieving high selectivity and stability, particularly in acidic electrolytes. Here, we successfully engineer an efficient armor-like catalyst, comprising Fe nanoparticles within nitrogen-doped carbon (Fe@NC) based on a solvent-free mechanochemistry method followed by pyrolysis. Porous nitrogen-doped carbon shells served as an effective protective layer for the Fe nanoparticles, facilitating the conversion of CO<sub>2</sub> to CO with an impressive FE<sub>CO</sub> of 99.0% in acidic electrolytes. As a result, the armored Fe@NC sustained its catalytic activity throughout 14 hours electrolysis period.</p></div>\",\"PeriodicalId\":78,\"journal\":{\"name\":\"Green Chemistry\",\"volume\":\"26 10\",\"pages\":\"Pages 5832-5837\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2024-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1463926224004217\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1463926224004217","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

二氧化碳的电化学还原在实现高选择性和稳定性方面一直存在挑战,尤其是在酸性电解质中。在此,我们采用无溶剂机械化学方法,在掺氮碳(Fe@NC)内成功设计出一种高效的铠甲状催化剂。多孔掺氮碳壳可作为铁纳米颗粒的有效保护层,促进二氧化碳向一氧化碳的转化,在酸性电解质中的FECO高达99.0%,令人印象深刻。因此,铠装的 Fe@NC 在 14 小时的电解过程中一直保持着催化活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient electrochemical CO2 reduction in acidic electrolytes using armor-like iron nanoparticles/porous nitrogen-doped carbon†

Efficient electrochemical CO2 reduction in acidic electrolytes using armor-like iron nanoparticles/porous nitrogen-doped carbon†

Efficient electrochemical CO2 reduction in acidic electrolytes using armor-like iron nanoparticles/porous nitrogen-doped carbon†

Electrochemical reduction of CO2 presents a persistent challenge in achieving high selectivity and stability, particularly in acidic electrolytes. Here, we successfully engineer an efficient armor-like catalyst, comprising Fe nanoparticles within nitrogen-doped carbon (Fe@NC) based on a solvent-free mechanochemistry method followed by pyrolysis. Porous nitrogen-doped carbon shells served as an effective protective layer for the Fe nanoparticles, facilitating the conversion of CO2 to CO with an impressive FECO of 99.0% in acidic electrolytes. As a result, the armored Fe@NC sustained its catalytic activity throughout 14 hours electrolysis period.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Chemistry
Green Chemistry 化学-化学综合
CiteScore
16.10
自引率
7.10%
发文量
677
审稿时长
1.4 months
期刊介绍: Green Chemistry is a journal that provides a unique forum for the publication of innovative research on the development of alternative green and sustainable technologies. The scope of Green Chemistry is based on the definition proposed by Anastas and Warner (Green Chemistry: Theory and Practice, P T Anastas and J C Warner, Oxford University Press, Oxford, 1998), which defines green chemistry as the utilisation of a set of principles that reduces or eliminates the use or generation of hazardous substances in the design, manufacture and application of chemical products. Green Chemistry aims to reduce the environmental impact of the chemical enterprise by developing a technology base that is inherently non-toxic to living things and the environment. The journal welcomes submissions on all aspects of research relating to this endeavor and publishes original and significant cutting-edge research that is likely to be of wide general appeal. For a work to be published, it must present a significant advance in green chemistry, including a comparison with existing methods and a demonstration of advantages over those methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信