具有季节性和空间异质性的反应-平流-扩散血吸虫病流行模型的阈值动力学

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Peng Wu, Yurij Salmaniw, Xiunan Wang
{"title":"具有季节性和空间异质性的反应-平流-扩散血吸虫病流行模型的阈值动力学","authors":"Peng Wu, Yurij Salmaniw, Xiunan Wang","doi":"10.1007/s00285-024-02097-6","DOIUrl":null,"url":null,"abstract":"<p>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number <span>\\({\\mathcal {R}}_0\\)</span> and show that the disease-free periodic solution is globally attractive when <span>\\({\\mathcal {R}}_0&lt;1\\)</span> whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when <span>\\({\\mathcal {R}}_0&gt;1\\)</span>. Moreover, we find that <span>\\({\\mathcal {R}}_0\\)</span> is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity\",\"authors\":\"Peng Wu, Yurij Salmaniw, Xiunan Wang\",\"doi\":\"10.1007/s00285-024-02097-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number <span>\\\\({\\\\mathcal {R}}_0\\\\)</span> and show that the disease-free periodic solution is globally attractive when <span>\\\\({\\\\mathcal {R}}_0&lt;1\\\\)</span> whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when <span>\\\\({\\\\mathcal {R}}_0&gt;1\\\\)</span>. Moreover, we find that <span>\\\\({\\\\mathcal {R}}_0\\\\)</span> is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00285-024-02097-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-024-02097-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

大多数水媒疾病模型都忽略了水流的平流,以简化数学分析和数值计算。然而,平流在决定疾病传播动态方面可以发挥重要作用。本文研究了周期性反应-平流-扩散血吸虫病模型的长期动态,并探讨了平流、季节性和空间异质性对疾病传播的共同影响。我们推导出基本繁殖数\({\mathcal {R}}_0\),并证明当\({\mathcal {R}}_0<1\)时,无病周期解具有全局吸引力,而当\({\mathcal {R}}_0>1\)时,存在正的流行周期解,并且在特殊情况下系统具有均匀持久性。此外,我们还发现\({\mathcal {R}}_0\) 是平流系数的递减函数,这为我们了解为什么血吸虫病在水流缓慢的地区更为严重提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity

Threshold dynamics of a reaction–advection–diffusion schistosomiasis epidemic model with seasonality and spatial heterogeneity

Most water-borne disease models ignore the advection of water flows in order to simplify the mathematical analysis and numerical computation. However, advection can play an important role in determining the disease transmission dynamics. In this paper, we investigate the long-term dynamics of a periodic reaction–advection–diffusion schistosomiasis model and explore the joint impact of advection, seasonality and spatial heterogeneity on the transmission of the disease. We derive the basic reproduction number \({\mathcal {R}}_0\) and show that the disease-free periodic solution is globally attractive when \({\mathcal {R}}_0<1\) whereas there is a positive endemic periodic solution and the system is uniformly persistent in a special case when \({\mathcal {R}}_0>1\). Moreover, we find that \({\mathcal {R}}_0\) is a decreasing function of the advection coefficients which offers insights into why schistosomiasis is more serious in regions with slow water flows.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信