{"title":"用硅藻土填料和新型可逆交联反应剂改善异方性聚丁烯-1 的性能","authors":"Abdelbasset Abdessamad Reguig, Said Bouhelal","doi":"10.1002/vnl.22110","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <p>This study investigates the application of a novel approach involving reversible crosslinking reaction agent (RXR) and diatomaceous earth to enhance the properties of isotactic polybutene-1 (PB-1) resin. The present study diverges from conventional methods by focusing on the combined effects of these two additives on various attributes, including rheological, mechanical, thermal, structural, and morphological properties. A unique crosslinking approach involving a combination of sulfur, accelerator, and peroxide was employed to change the surface of diatomaceous earth, yielding promising results. The rheological investigations revealed that the RXR agent led to a substantial increase in viscosity as a result of a crosslinking reaction, while diatomaceous earth had a minimal impact. The incorporation of both compounds led to a significant reduction in mechanical properties. The addition of diatomaceous earth filler demonstrated anti-nucleating characteristics, leading to a reduction in both the temperature at which crystallization occurs and the extent of crystallinity. In contrast, the RXR agent has demonstrated an increase in crystallization temperature. The use of diatomaceous earth filler led to a substantial enhancement in thermal stability. Furthermore, FTIR and WAXS analysis revealed that neither diatomaceous earth nor the RXR agent caused significant alterations in crystalline modification. The SEM micrographs revealed the clustering of diatomaceous earth filler, which is likely due to inadequate interactions between the filler and the matrix, explaining the decrease in mechanical characteristics that was found.</p>\n </section>\n \n <section>\n \n <h3> Highlights</h3>\n \n <div>\n <ul>\n \n <li>RXR increases viscosity significantly via crosslinking.</li>\n \n <li>Both agents decrease mechanical properties.</li>\n \n <li>Diatomaceous earth reduces crystallization temperature and degree.</li>\n \n <li>Diatomaceous earth filler enhances thermal stability in PB-1 resin.</li>\n </ul>\n </div>\n </section>\n </div>","PeriodicalId":17662,"journal":{"name":"Journal of Vinyl & Additive Technology","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving isotactic polybutene-1 performance with diatomaceous earth filler and a novel reversible crosslinking reaction agent\",\"authors\":\"Abdelbasset Abdessamad Reguig, Said Bouhelal\",\"doi\":\"10.1002/vnl.22110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <p>This study investigates the application of a novel approach involving reversible crosslinking reaction agent (RXR) and diatomaceous earth to enhance the properties of isotactic polybutene-1 (PB-1) resin. The present study diverges from conventional methods by focusing on the combined effects of these two additives on various attributes, including rheological, mechanical, thermal, structural, and morphological properties. A unique crosslinking approach involving a combination of sulfur, accelerator, and peroxide was employed to change the surface of diatomaceous earth, yielding promising results. The rheological investigations revealed that the RXR agent led to a substantial increase in viscosity as a result of a crosslinking reaction, while diatomaceous earth had a minimal impact. The incorporation of both compounds led to a significant reduction in mechanical properties. The addition of diatomaceous earth filler demonstrated anti-nucleating characteristics, leading to a reduction in both the temperature at which crystallization occurs and the extent of crystallinity. In contrast, the RXR agent has demonstrated an increase in crystallization temperature. The use of diatomaceous earth filler led to a substantial enhancement in thermal stability. Furthermore, FTIR and WAXS analysis revealed that neither diatomaceous earth nor the RXR agent caused significant alterations in crystalline modification. The SEM micrographs revealed the clustering of diatomaceous earth filler, which is likely due to inadequate interactions between the filler and the matrix, explaining the decrease in mechanical characteristics that was found.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Highlights</h3>\\n \\n <div>\\n <ul>\\n \\n <li>RXR increases viscosity significantly via crosslinking.</li>\\n \\n <li>Both agents decrease mechanical properties.</li>\\n \\n <li>Diatomaceous earth reduces crystallization temperature and degree.</li>\\n \\n <li>Diatomaceous earth filler enhances thermal stability in PB-1 resin.</li>\\n </ul>\\n </div>\\n </section>\\n </div>\",\"PeriodicalId\":17662,\"journal\":{\"name\":\"Journal of Vinyl & Additive Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vinyl & Additive Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22110\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vinyl & Additive Technology","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/vnl.22110","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Improving isotactic polybutene-1 performance with diatomaceous earth filler and a novel reversible crosslinking reaction agent
This study investigates the application of a novel approach involving reversible crosslinking reaction agent (RXR) and diatomaceous earth to enhance the properties of isotactic polybutene-1 (PB-1) resin. The present study diverges from conventional methods by focusing on the combined effects of these two additives on various attributes, including rheological, mechanical, thermal, structural, and morphological properties. A unique crosslinking approach involving a combination of sulfur, accelerator, and peroxide was employed to change the surface of diatomaceous earth, yielding promising results. The rheological investigations revealed that the RXR agent led to a substantial increase in viscosity as a result of a crosslinking reaction, while diatomaceous earth had a minimal impact. The incorporation of both compounds led to a significant reduction in mechanical properties. The addition of diatomaceous earth filler demonstrated anti-nucleating characteristics, leading to a reduction in both the temperature at which crystallization occurs and the extent of crystallinity. In contrast, the RXR agent has demonstrated an increase in crystallization temperature. The use of diatomaceous earth filler led to a substantial enhancement in thermal stability. Furthermore, FTIR and WAXS analysis revealed that neither diatomaceous earth nor the RXR agent caused significant alterations in crystalline modification. The SEM micrographs revealed the clustering of diatomaceous earth filler, which is likely due to inadequate interactions between the filler and the matrix, explaining the decrease in mechanical characteristics that was found.
Highlights
RXR increases viscosity significantly via crosslinking.
Both agents decrease mechanical properties.
Diatomaceous earth reduces crystallization temperature and degree.
Diatomaceous earth filler enhances thermal stability in PB-1 resin.
期刊介绍:
Journal of Vinyl and Additive Technology is a peer-reviewed technical publication for new work in the fields of polymer modifiers and additives, vinyl polymers and selected review papers. Over half of all papers in JVAT are based on technology of additives and modifiers for all classes of polymers: thermoset polymers and both condensation and addition thermoplastics. Papers on vinyl technology include PVC additives.