Błażej M. Szablikowski, Maciej Błaszak, Krzysztof Marciniak
{"title":"静态耦合 KdV 系统及其 Stäckel 表示法","authors":"Błażej M. Szablikowski, Maciej Błaszak, Krzysztof Marciniak","doi":"10.1111/sapm.12698","DOIUrl":null,"url":null,"abstract":"<p>In this article, we investigate stationary coupled Korteweg–de Vries (cKdV) systems and prove that every <span></span><math>\n <semantics>\n <mi>N</mi>\n <annotation>$N$</annotation>\n </semantics></math>-field stationary cKdV system can be written, after a careful reparameterization of jet variables, as a classical separable Stäckel system in <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N+1$</annotation>\n </semantics></math> different ways. For each of these <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>+</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$N+1$</annotation>\n </semantics></math> parameterizations, we present an explicit map between the jet variables and the separation variables of the system. Finally, we show that each pair of Stäckel representations of the same stationary cKdV system, when considered in the phase space extended by Casimir variables, is connected by an appropriate finite-dimensional Miura map, which leads to an <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow>\n <annotation>$(N+1)$</annotation>\n </semantics></math>-Hamiltonian formulation for the stationary cKdV system.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stationary coupled KdV systems and their Stäckel representations\",\"authors\":\"Błażej M. Szablikowski, Maciej Błaszak, Krzysztof Marciniak\",\"doi\":\"10.1111/sapm.12698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, we investigate stationary coupled Korteweg–de Vries (cKdV) systems and prove that every <span></span><math>\\n <semantics>\\n <mi>N</mi>\\n <annotation>$N$</annotation>\\n </semantics></math>-field stationary cKdV system can be written, after a careful reparameterization of jet variables, as a classical separable Stäckel system in <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$N+1$</annotation>\\n </semantics></math> different ways. For each of these <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$N+1$</annotation>\\n </semantics></math> parameterizations, we present an explicit map between the jet variables and the separation variables of the system. Finally, we show that each pair of Stäckel representations of the same stationary cKdV system, when considered in the phase space extended by Casimir variables, is connected by an appropriate finite-dimensional Miura map, which leads to an <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation>$(N+1)$</annotation>\\n </semantics></math>-Hamiltonian formulation for the stationary cKdV system.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12698\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.12698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Stationary coupled KdV systems and their Stäckel representations
In this article, we investigate stationary coupled Korteweg–de Vries (cKdV) systems and prove that every -field stationary cKdV system can be written, after a careful reparameterization of jet variables, as a classical separable Stäckel system in different ways. For each of these parameterizations, we present an explicit map between the jet variables and the separation variables of the system. Finally, we show that each pair of Stäckel representations of the same stationary cKdV system, when considered in the phase space extended by Casimir variables, is connected by an appropriate finite-dimensional Miura map, which leads to an -Hamiltonian formulation for the stationary cKdV system.