Tao Yang, Zhi-yuan Sun, Ming-liang Wang, Xiao-qiang Zhu, Jing-yu Zhao
{"title":"北祁连山中生代花岗岩的地质年代和地球化学:对成岩学和构造背景的影响","authors":"Tao Yang, Zhi-yuan Sun, Ming-liang Wang, Xiao-qiang Zhu, Jing-yu Zhao","doi":"10.1134/S0016702924700320","DOIUrl":null,"url":null,"abstract":"<p>This paper documents the zircon U–Pb ages, whole-rock geochemistry, and Sr–Nd–Pb isotopes of the Mesozoic granites in the central part of the North Qilian Orogenic Belt to provide information on the tectonic evolution and crustal accretion process of the Qilian Orogenic Belt. Zircon U–Pb dating yields an age of 215.3 ± 3.1 Ma, indicating that the Beidaban monzogranites formed from Late Triassic. They are characterized by high contents of SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and K<sub>2</sub>O; are slightly peraluminous (A/CNK = 1.08–1.15); and have mineralogical assemblages of primary biotite and ilmenite, illustrating that they are shoshonitic and peraluminous S-type granite. The Beidaban monzogranites have initial (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> values ranging from 0.71456 to 0.71867 and εNd(t) values ranging from –12.9 to –8.5 with two-stage Nd model ages of 1.69–2.04 Ga, suggesting that they originated from partial melting of the Paleo-Mesoproterozoic (Longshoushan Group) continental crustal metasedimentary rocks. Initial Pb isotopic compositions (<sup>206</sup>Pb/<sup>204</sup>Pb = 19.44–21.80; <sup>207</sup>Pb/<sup>204</sup>Pb = 15.76–15.89; <sup>208</sup>Pb/<sup>204</sup>Pb = 39.62–41.26) and geochemical features such as high Th/Ta (9.3–67.4, 37.4 on average) and Rb/Nb (12.5–17.1) are consistent with recycled crustal components. Combined with previous geochronological and geochemical data, we suggest that the Mesozoic granites probably formed in a post-collisional tectonic setting and that the North Qilian Orogen Belt experienced comprehensive intracontinental orogenesis after the closure of the Qilian ocean.</p>","PeriodicalId":12781,"journal":{"name":"Geochemistry International","volume":"62 7","pages":"696 - 713"},"PeriodicalIF":0.7000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochronology and Geochemistry of Mesozoic Granites in the North Qilian Shan: Implications for Petrogenesis and Tectonic Setting\",\"authors\":\"Tao Yang, Zhi-yuan Sun, Ming-liang Wang, Xiao-qiang Zhu, Jing-yu Zhao\",\"doi\":\"10.1134/S0016702924700320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper documents the zircon U–Pb ages, whole-rock geochemistry, and Sr–Nd–Pb isotopes of the Mesozoic granites in the central part of the North Qilian Orogenic Belt to provide information on the tectonic evolution and crustal accretion process of the Qilian Orogenic Belt. Zircon U–Pb dating yields an age of 215.3 ± 3.1 Ma, indicating that the Beidaban monzogranites formed from Late Triassic. They are characterized by high contents of SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, and K<sub>2</sub>O; are slightly peraluminous (A/CNK = 1.08–1.15); and have mineralogical assemblages of primary biotite and ilmenite, illustrating that they are shoshonitic and peraluminous S-type granite. The Beidaban monzogranites have initial (<sup>87</sup>Sr/<sup>86</sup>Sr)<sub>i</sub> values ranging from 0.71456 to 0.71867 and εNd(t) values ranging from –12.9 to –8.5 with two-stage Nd model ages of 1.69–2.04 Ga, suggesting that they originated from partial melting of the Paleo-Mesoproterozoic (Longshoushan Group) continental crustal metasedimentary rocks. Initial Pb isotopic compositions (<sup>206</sup>Pb/<sup>204</sup>Pb = 19.44–21.80; <sup>207</sup>Pb/<sup>204</sup>Pb = 15.76–15.89; <sup>208</sup>Pb/<sup>204</sup>Pb = 39.62–41.26) and geochemical features such as high Th/Ta (9.3–67.4, 37.4 on average) and Rb/Nb (12.5–17.1) are consistent with recycled crustal components. Combined with previous geochronological and geochemical data, we suggest that the Mesozoic granites probably formed in a post-collisional tectonic setting and that the North Qilian Orogen Belt experienced comprehensive intracontinental orogenesis after the closure of the Qilian ocean.</p>\",\"PeriodicalId\":12781,\"journal\":{\"name\":\"Geochemistry International\",\"volume\":\"62 7\",\"pages\":\"696 - 713\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0016702924700320\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry International","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016702924700320","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Geochronology and Geochemistry of Mesozoic Granites in the North Qilian Shan: Implications for Petrogenesis and Tectonic Setting
This paper documents the zircon U–Pb ages, whole-rock geochemistry, and Sr–Nd–Pb isotopes of the Mesozoic granites in the central part of the North Qilian Orogenic Belt to provide information on the tectonic evolution and crustal accretion process of the Qilian Orogenic Belt. Zircon U–Pb dating yields an age of 215.3 ± 3.1 Ma, indicating that the Beidaban monzogranites formed from Late Triassic. They are characterized by high contents of SiO2, Al2O3, and K2O; are slightly peraluminous (A/CNK = 1.08–1.15); and have mineralogical assemblages of primary biotite and ilmenite, illustrating that they are shoshonitic and peraluminous S-type granite. The Beidaban monzogranites have initial (87Sr/86Sr)i values ranging from 0.71456 to 0.71867 and εNd(t) values ranging from –12.9 to –8.5 with two-stage Nd model ages of 1.69–2.04 Ga, suggesting that they originated from partial melting of the Paleo-Mesoproterozoic (Longshoushan Group) continental crustal metasedimentary rocks. Initial Pb isotopic compositions (206Pb/204Pb = 19.44–21.80; 207Pb/204Pb = 15.76–15.89; 208Pb/204Pb = 39.62–41.26) and geochemical features such as high Th/Ta (9.3–67.4, 37.4 on average) and Rb/Nb (12.5–17.1) are consistent with recycled crustal components. Combined with previous geochronological and geochemical data, we suggest that the Mesozoic granites probably formed in a post-collisional tectonic setting and that the North Qilian Orogen Belt experienced comprehensive intracontinental orogenesis after the closure of the Qilian ocean.
期刊介绍:
Geochemistry International is a peer reviewed journal that publishes articles on cosmochemistry; geochemistry of magmatic, metamorphic, hydrothermal, and sedimentary processes; isotope geochemistry; organic geochemistry; applied geochemistry; and chemistry of the environment. Geochemistry International provides readers with a unique opportunity to refine their understanding of the geology of the vast territory of the Eurasian continent. The journal welcomes manuscripts from all countries in the English or Russian language.