{"title":"具有多重反捕食者行为的捕食者-猎物系统的稳定性和分岔","authors":"YUE XIA, XINHAO HUANG, FENGDE CHEN, LIJUAN CHEN","doi":"10.1142/s021833902450030x","DOIUrl":null,"url":null,"abstract":"<p>In this paper, a predator–prey system with multiple anti-predator behaviors is developed and studied, where not only the prey may spread between patches but also the fear effect and counter-attack behavior of the prey are taken into account. First, the stability and existence of coexistence equilibria are presented. The unique positive equilibrium may be a saddle-node or a cusp of codimension 2. Then, various transversality conditions of bifurcations such as saddle-node bifurcation, transcritical bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcation are obtained. Moreover, compared with a single strategy, the multiple anti-predator strategies are more beneficial to the persistence and the population density of prey.</p>","PeriodicalId":54872,"journal":{"name":"Journal of Biological Systems","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"STABILITY AND BIFURCATION OF A PREDATOR–PREY SYSTEM WITH MULTIPLE ANTI-PREDATOR BEHAVIORS\",\"authors\":\"YUE XIA, XINHAO HUANG, FENGDE CHEN, LIJUAN CHEN\",\"doi\":\"10.1142/s021833902450030x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, a predator–prey system with multiple anti-predator behaviors is developed and studied, where not only the prey may spread between patches but also the fear effect and counter-attack behavior of the prey are taken into account. First, the stability and existence of coexistence equilibria are presented. The unique positive equilibrium may be a saddle-node or a cusp of codimension 2. Then, various transversality conditions of bifurcations such as saddle-node bifurcation, transcritical bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcation are obtained. Moreover, compared with a single strategy, the multiple anti-predator strategies are more beneficial to the persistence and the population density of prey.</p>\",\"PeriodicalId\":54872,\"journal\":{\"name\":\"Journal of Biological Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Systems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1142/s021833902450030x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Systems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/s021833902450030x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
STABILITY AND BIFURCATION OF A PREDATOR–PREY SYSTEM WITH MULTIPLE ANTI-PREDATOR BEHAVIORS
In this paper, a predator–prey system with multiple anti-predator behaviors is developed and studied, where not only the prey may spread between patches but also the fear effect and counter-attack behavior of the prey are taken into account. First, the stability and existence of coexistence equilibria are presented. The unique positive equilibrium may be a saddle-node or a cusp of codimension 2. Then, various transversality conditions of bifurcations such as saddle-node bifurcation, transcritical bifurcation, Hopf bifurcation and Bogdanov–Takens bifurcation are obtained. Moreover, compared with a single strategy, the multiple anti-predator strategies are more beneficial to the persistence and the population density of prey.
期刊介绍:
The Journal of Biological Systems is published quarterly. The goal of the Journal is to promote interdisciplinary approaches in Biology and in Medicine, and the study of biological situations with a variety of tools, including mathematical and general systems methods. The Journal solicits original research papers and survey articles in areas that include (but are not limited to):
Complex systems studies; isomorphies; nonlinear dynamics; entropy; mathematical tools and systems theories with applications in Biology and Medicine.
Interdisciplinary approaches in Biology and Medicine; transfer of methods from one discipline to another; integration of biological levels, from atomic to molecular, macromolecular, cellular, and organic levels; animal biology; plant biology.
Environmental studies; relationships between individuals, populations, communities and ecosystems; bioeconomics, management of renewable resources; hierarchy theory; integration of spatial and time scales.
Evolutionary biology; co-evolutions; genetics and evolution; branching processes and phyllotaxis.
Medical systems; physiology; cardiac modeling; computer models in Medicine; cancer research; epidemiology.
Numerical simulations and computations; numerical study and analysis of biological data.
Epistemology; history of science.
The journal will also publish book reviews.