Hanna Vuorenpää, Joona Valtonen, Kirsi Penttinen, Sanna Koskimäki, Emma Hovinen, Antti Ahola, Christine Gering, Jenny Parraga, Minna Kelloniemi, Jari Hyttinen, Minna Kellomäki, Katriina Aalto-Setälä, Susanna Miettinen, Mari Pekkanen-Mattila
{"title":"基于结冷胶-明胶的心脏模型支持细胞网络和功能性心肌细胞的形成","authors":"Hanna Vuorenpää, Joona Valtonen, Kirsi Penttinen, Sanna Koskimäki, Emma Hovinen, Antti Ahola, Christine Gering, Jenny Parraga, Minna Kelloniemi, Jari Hyttinen, Minna Kellomäki, Katriina Aalto-Setälä, Susanna Miettinen, Mari Pekkanen-Mattila","doi":"10.1007/s10616-024-00630-5","DOIUrl":null,"url":null,"abstract":"<p>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes\",\"authors\":\"Hanna Vuorenpää, Joona Valtonen, Kirsi Penttinen, Sanna Koskimäki, Emma Hovinen, Antti Ahola, Christine Gering, Jenny Parraga, Minna Kelloniemi, Jari Hyttinen, Minna Kellomäki, Katriina Aalto-Setälä, Susanna Miettinen, Mari Pekkanen-Mattila\",\"doi\":\"10.1007/s10616-024-00630-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-024-00630-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-024-00630-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
心血管疾病仍然是全球最常见的死亡原因。为了揭示各种心血管疾病的潜在机制,可以设计具有细胞和支持性生物材料的体外模型来再现人类心脏的重要组成部分。在这项研究中,我们分析了心肌细胞(CM)与血管网络和脂肪组织间充质干/基质细胞(ASC)的三维共培养是否能支持CM的功能。在肼基改性明胶和氧化结冷胶混合水凝胶中,分别将心肌细胞与内皮细胞(EC)和间充质干细胞或仅与间充质干细胞培养成心血管多培养基和心肌共培养基。我们研究了 CM 在两种不同细胞设置中的功能特性,并分析了血管网络的形成、细胞形态和定向。结果表明,结冷胶-明胶水凝胶支持形成两种不同的细胞网络和功能性 CM。我们检测到在心血管多培养中形成了适度的血管网络,在多培养和共培养中形成了广泛的 ASC 衍生的α-平滑肌肌动蛋白阳性细胞网络。iPSC-CM 在两种设置中都显示出拉长的形态、与已形成的网络部分一致的方向,并呈现出正常的钙瞬态、跳动率以及收缩和松弛行为。这些三维心脏模型为研究心血管疾病的(病理)生理机制提供了前景广阔的平台。
Gellan gum-gelatin based cardiac models support formation of cellular networks and functional cardiomyocytes
Cardiovascular diseases remain as the most common cause of death worldwide. To reveal the underlying mechanisms in varying cardiovascular diseases, in vitro models with cells and supportive biomaterial can be designed to recapitulate the essential components of human heart. In this study, we analyzed whether 3D co-culture of cardiomyocytes (CM) with vascular network and with adipose tissue-derived mesenchymal stem/stromal cells (ASC) can support CM functionality. CM were cultured with either endothelial cells (EC) and ASC or with only ASC in hydrazide-modified gelatin and oxidized gellan gum hybrid hydrogel to form cardiovascular multiculture and myocardial co-culture, respectively. We studied functional characteristics of CM in two different cellular set-ups and analyzed vascular network formation, cellular morphology and orientation. The results showed that gellan gum-gelatin hydrogel supports formation of two different cellular networks and functional CM. We detected formation of a modest vascular network in cardiovascular multiculture and extensive ASC-derived alpha smooth muscle actin -positive cellular network in multi- and co-culture. iPSC-CM showed elongated morphology, partly aligned orientation with the formed networks and presented normal calcium transients, beating rates, and contraction and relaxation behavior in both setups. These 3D cardiac models provide promising platforms to study (patho) physiological mechanisms of cardiovascular diseases.