{"title":"飞行时间二次离子质谱法在锂离子电池中的应用","authors":"Pengwei Li, Xiaoning Xia","doi":"10.2174/0115734110299035240422114008","DOIUrl":null,"url":null,"abstract":": Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is becoming a powerful tool in the Lithium-Ion Batteries (LIBs) field due to its excellent resolution and sensitivity, as well as its ability to provide spectrally and depth-resolved information. The perspective comprehensively delves into the application of ToF-SIMS in two major areas of LIBs research. Firstly, the article elucidates how ToF-SIMS has been instrumental in deciphering the Solid Electrolyte Interphase (SEI) composition and analyzing electrolyte aging. The insights gleaned from such studies have paved the way for enhancing the longevity and safety of LIBs. Secondly, we explore the role of ToF-SIMS in scrutinizing the distribution of interface reactions, which are critical for understanding charge and discharge mechanisms. The analysis aids in optimizing the interface properties, thereby improving battery performance. Such detections are paramount in ensuring the safety and operational stability of batteries. Overall, the integration of ToF-SIMS in LIBs research offers a promising avenue for the development of advanced and safer energy storage systems.","PeriodicalId":10742,"journal":{"name":"Current Analytical Chemistry","volume":"99 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of Time-of-flight Secondary Ion Mass Spectrometry in Lithium-ion Batteries\",\"authors\":\"Pengwei Li, Xiaoning Xia\",\"doi\":\"10.2174/0115734110299035240422114008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is becoming a powerful tool in the Lithium-Ion Batteries (LIBs) field due to its excellent resolution and sensitivity, as well as its ability to provide spectrally and depth-resolved information. The perspective comprehensively delves into the application of ToF-SIMS in two major areas of LIBs research. Firstly, the article elucidates how ToF-SIMS has been instrumental in deciphering the Solid Electrolyte Interphase (SEI) composition and analyzing electrolyte aging. The insights gleaned from such studies have paved the way for enhancing the longevity and safety of LIBs. Secondly, we explore the role of ToF-SIMS in scrutinizing the distribution of interface reactions, which are critical for understanding charge and discharge mechanisms. The analysis aids in optimizing the interface properties, thereby improving battery performance. Such detections are paramount in ensuring the safety and operational stability of batteries. Overall, the integration of ToF-SIMS in LIBs research offers a promising avenue for the development of advanced and safer energy storage systems.\",\"PeriodicalId\":10742,\"journal\":{\"name\":\"Current Analytical Chemistry\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.2174/0115734110299035240422114008\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.2174/0115734110299035240422114008","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Application of Time-of-flight Secondary Ion Mass Spectrometry in Lithium-ion Batteries
: Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) is becoming a powerful tool in the Lithium-Ion Batteries (LIBs) field due to its excellent resolution and sensitivity, as well as its ability to provide spectrally and depth-resolved information. The perspective comprehensively delves into the application of ToF-SIMS in two major areas of LIBs research. Firstly, the article elucidates how ToF-SIMS has been instrumental in deciphering the Solid Electrolyte Interphase (SEI) composition and analyzing electrolyte aging. The insights gleaned from such studies have paved the way for enhancing the longevity and safety of LIBs. Secondly, we explore the role of ToF-SIMS in scrutinizing the distribution of interface reactions, which are critical for understanding charge and discharge mechanisms. The analysis aids in optimizing the interface properties, thereby improving battery performance. Such detections are paramount in ensuring the safety and operational stability of batteries. Overall, the integration of ToF-SIMS in LIBs research offers a promising avenue for the development of advanced and safer energy storage systems.
期刊介绍:
Current Analytical Chemistry publishes full-length/mini reviews and original research articles on the most recent advances in analytical chemistry. All aspects of the field are represented, including analytical methodology, techniques, and instrumentation in both fundamental and applied research topics of interest to the broad readership of the journal. Current Analytical Chemistry strives to serve as an authoritative source of information in analytical chemistry and in related applications such as biochemical analysis, pharmaceutical research, quantitative biological imaging, novel sensors, and nanotechnology.