Clara Linder, Bharat Mehta, Salil Sainis, Johan B. Lindén, Caterina Zanella, Lars Nyborg
{"title":"海洋应用中添加制造铝合金的抗腐蚀性能","authors":"Clara Linder, Bharat Mehta, Salil Sainis, Johan B. Lindén, Caterina Zanella, Lars Nyborg","doi":"10.1038/s41529-024-00459-5","DOIUrl":null,"url":null,"abstract":"Additive manufacturing opens new possibilities for designing light-weight structures using aluminium alloys. The microstructure of two Al alloys and their corrosion resistance in NaCl and natural seawater environments were investigated. The newly designed Al-Mn-Cr-Zr based alloy showed a higher corrosion resistance than reference AlSi10Mg alloy in both environments in as printed and heat-treated conditions. The corrosion initiated in the Al matrix along the precipitates in the alloys where the Volta potential difference was found the highest. The coarser microstructure and precipitate composition of the new Al-alloy led to the formation of a resistant passive film which extended the passivity region of the Al-Mn-Cr-Zr alloy compared to the AlSi10Mg alloy. The effect of heat treatment could be seen in the microstructure as more precipitates were found in between the melt pool boundaries, which affected the corrosion initiation and slightly the pitting resistance. Overall, this study shows that a newly designed Al-alloy for additive manufacturing has a suitable corrosion resistance for applications in marine environments.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00459-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Corrosion resistance of additively manufactured aluminium alloys for marine applications\",\"authors\":\"Clara Linder, Bharat Mehta, Salil Sainis, Johan B. Lindén, Caterina Zanella, Lars Nyborg\",\"doi\":\"10.1038/s41529-024-00459-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Additive manufacturing opens new possibilities for designing light-weight structures using aluminium alloys. The microstructure of two Al alloys and their corrosion resistance in NaCl and natural seawater environments were investigated. The newly designed Al-Mn-Cr-Zr based alloy showed a higher corrosion resistance than reference AlSi10Mg alloy in both environments in as printed and heat-treated conditions. The corrosion initiated in the Al matrix along the precipitates in the alloys where the Volta potential difference was found the highest. The coarser microstructure and precipitate composition of the new Al-alloy led to the formation of a resistant passive film which extended the passivity region of the Al-Mn-Cr-Zr alloy compared to the AlSi10Mg alloy. The effect of heat treatment could be seen in the microstructure as more precipitates were found in between the melt pool boundaries, which affected the corrosion initiation and slightly the pitting resistance. Overall, this study shows that a newly designed Al-alloy for additive manufacturing has a suitable corrosion resistance for applications in marine environments.\",\"PeriodicalId\":19270,\"journal\":{\"name\":\"npj Materials Degradation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41529-024-00459-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Materials Degradation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41529-024-00459-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00459-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Corrosion resistance of additively manufactured aluminium alloys for marine applications
Additive manufacturing opens new possibilities for designing light-weight structures using aluminium alloys. The microstructure of two Al alloys and their corrosion resistance in NaCl and natural seawater environments were investigated. The newly designed Al-Mn-Cr-Zr based alloy showed a higher corrosion resistance than reference AlSi10Mg alloy in both environments in as printed and heat-treated conditions. The corrosion initiated in the Al matrix along the precipitates in the alloys where the Volta potential difference was found the highest. The coarser microstructure and precipitate composition of the new Al-alloy led to the formation of a resistant passive film which extended the passivity region of the Al-Mn-Cr-Zr alloy compared to the AlSi10Mg alloy. The effect of heat treatment could be seen in the microstructure as more precipitates were found in between the melt pool boundaries, which affected the corrosion initiation and slightly the pitting resistance. Overall, this study shows that a newly designed Al-alloy for additive manufacturing has a suitable corrosion resistance for applications in marine environments.
期刊介绍:
npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure.
The journal covers a broad range of topics including but not limited to:
-Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli
-Computational and experimental studies of degradation mechanisms and kinetics
-Characterization of degradation by traditional and emerging techniques
-New approaches and technologies for enhancing resistance to degradation
-Inspection and monitoring techniques for materials in-service, such as sensing technologies