双截断随机变量的熵及其加权版本的特性

IF 1.1 4区 数学 Q1 MATHEMATICS
E. I. Abdul Sathar, R. Dhanya Nair
{"title":"双截断随机变量的熵及其加权版本的特性","authors":"E. I. Abdul Sathar, R. Dhanya Nair","doi":"10.1007/s11587-024-00863-8","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes interval extropy and its length-biased version to measure the uncertainty of a doubly truncated random variable. Properties and characterizations of some important life distributions in terms of the new measures are obtained. Nonparametric estimators for the proposed measures are also suggested, and their performance is verified using simulated and real data sets.</p>","PeriodicalId":21373,"journal":{"name":"Ricerche di Matematica","volume":"10 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties of extropy and its weighted version for doubly truncated random variables\",\"authors\":\"E. I. Abdul Sathar, R. Dhanya Nair\",\"doi\":\"10.1007/s11587-024-00863-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes interval extropy and its length-biased version to measure the uncertainty of a doubly truncated random variable. Properties and characterizations of some important life distributions in terms of the new measures are obtained. Nonparametric estimators for the proposed measures are also suggested, and their performance is verified using simulated and real data sets.</p>\",\"PeriodicalId\":21373,\"journal\":{\"name\":\"Ricerche di Matematica\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ricerche di Matematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11587-024-00863-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ricerche di Matematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11587-024-00863-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了区间熵及其长度偏置版本来度量双截断随机变量的不确定性。根据新的度量方法,获得了一些重要生命分布的属性和特征。此外,还提出了拟议度量的非参数估计器,并使用模拟和真实数据集验证了它们的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Properties of extropy and its weighted version for doubly truncated random variables

Properties of extropy and its weighted version for doubly truncated random variables

This paper proposes interval extropy and its length-biased version to measure the uncertainty of a doubly truncated random variable. Properties and characterizations of some important life distributions in terms of the new measures are obtained. Nonparametric estimators for the proposed measures are also suggested, and their performance is verified using simulated and real data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ricerche di Matematica
Ricerche di Matematica Mathematics-Applied Mathematics
CiteScore
3.00
自引率
8.30%
发文量
61
期刊介绍: “Ricerche di Matematica” publishes high-quality research articles in any field of pure and applied mathematics. Articles must be original and written in English. Details about article submission can be found online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信