{"title":"论森林中最小支配集和总支配集的数量","authors":"Jan Petr, Julien Portier, Leo Versteegen","doi":"10.1002/jgt.23107","DOIUrl":null,"url":null,"abstract":"<p>We show that the maximum number of minimum dominating sets of a forest with domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n </mrow></math> is at most <span></span><math>\n \n <mrow>\n <msup>\n <msqrt>\n <mn>5</mn>\n </msqrt>\n \n <mi>γ</mi>\n </msup>\n </mrow></math> and construct for each <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n </mrow></math> a tree with domination number <span></span><math>\n \n <mrow>\n <mi>γ</mi>\n </mrow></math> that has more than <span></span><math>\n \n <mrow>\n <mfrac>\n <mn>2</mn>\n \n <mn>5</mn>\n </mfrac>\n \n <msup>\n <msqrt>\n <mn>5</mn>\n </msqrt>\n \n <mi>γ</mi>\n </msup>\n </mrow></math> minimum dominating sets. Furthermore, we disprove a conjecture about the number of minimum total dominating sets in forests by Henning, Mohr and Rautenbach.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23107","citationCount":"0","resultStr":"{\"title\":\"On the number of minimum dominating sets and total dominating sets in forests\",\"authors\":\"Jan Petr, Julien Portier, Leo Versteegen\",\"doi\":\"10.1002/jgt.23107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the maximum number of minimum dominating sets of a forest with domination number <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n </mrow></math> is at most <span></span><math>\\n \\n <mrow>\\n <msup>\\n <msqrt>\\n <mn>5</mn>\\n </msqrt>\\n \\n <mi>γ</mi>\\n </msup>\\n </mrow></math> and construct for each <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n </mrow></math> a tree with domination number <span></span><math>\\n \\n <mrow>\\n <mi>γ</mi>\\n </mrow></math> that has more than <span></span><math>\\n \\n <mrow>\\n <mfrac>\\n <mn>2</mn>\\n \\n <mn>5</mn>\\n </mfrac>\\n \\n <msup>\\n <msqrt>\\n <mn>5</mn>\\n </msqrt>\\n \\n <mi>γ</mi>\\n </msup>\\n </mrow></math> minimum dominating sets. Furthermore, we disprove a conjecture about the number of minimum total dominating sets in forests by Henning, Mohr and Rautenbach.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the number of minimum dominating sets and total dominating sets in forests
We show that the maximum number of minimum dominating sets of a forest with domination number is at most and construct for each a tree with domination number that has more than minimum dominating sets. Furthermore, we disprove a conjecture about the number of minimum total dominating sets in forests by Henning, Mohr and Rautenbach.