在线性时间内对具有树状骨干的小群进行λ $\lambda $骨干着色

IF 0.9 3区 数学 Q2 MATHEMATICS
Krzysztof Michalik, Krzysztof Turowski
{"title":"在线性时间内对具有树状骨干的小群进行λ $\\lambda $骨干着色","authors":"Krzysztof Michalik,&nbsp;Krzysztof Turowski","doi":"10.1002/jgt.23108","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math>-backbone coloring of a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with its subgraph (also called a <i>backbone</i>) <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is a function <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n \n <mo>:</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>→</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $c:V(G)\\to \\{1,\\ldots ,k\\}$</annotation>\n </semantics></math> ensuring that <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> is a proper coloring of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and for each <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\{u,v\\}\\in E(H)$</annotation>\n </semantics></math> it holds that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n \n <mi>c</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>c</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>≥</mo>\n \n <mi>λ</mi>\n </mrow>\n <annotation> $|c(u)-c(v)|\\ge \\lambda $</annotation>\n </semantics></math>. In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed <span></span><math>\n <semantics>\n <mrow>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>Δ</mi>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $\\max \\{n,2\\lambda \\}+{\\rm{\\Delta }}{(H)}^{2}\\lceil \\mathrm{log}n\\rceil $</annotation>\n </semantics></math>. This result improves on the previously existing approximation algorithms as it is <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>Δ</mi>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({\\rm{\\Delta }}{(H)}^{2}\\lceil \\mathrm{log}n\\rceil )$</annotation>\n </semantics></math>-absolutely approximate, that is, with an additive error over the optimum. We also present an infinite family of trees <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>T</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(T)=3$</annotation>\n </semantics></math> for which the coloring of cliques with backbones <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> requires at least <span></span><math>\n <semantics>\n <mrow>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\max \\{n,2\\lambda \\}+{\\rm{\\Omega }}(\\mathrm{log}n)$</annotation>\n </semantics></math> colors for <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> close to <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation> $\\frac{n}{2}$</annotation>\n </semantics></math>. The construction draws on the theory of Fibonacci numbers, particularly on Zeckendorf representations.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"107 1","pages":"5-28"},"PeriodicalIF":0.9000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\n \\n \\n λ\\n \\n $\\\\lambda $\\n -backbone coloring of cliques with tree backbones in linear time\",\"authors\":\"Krzysztof Michalik,&nbsp;Krzysztof Turowski\",\"doi\":\"10.1002/jgt.23108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math>-backbone coloring of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with its subgraph (also called a <i>backbone</i>) <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is a function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n \\n <mo>:</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>→</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $c:V(G)\\\\to \\\\{1,\\\\ldots ,k\\\\}$</annotation>\\n </semantics></math> ensuring that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation> $c$</annotation>\\n </semantics></math> is a proper coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>u</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∈</mo>\\n \\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{u,v\\\\}\\\\in E(H)$</annotation>\\n </semantics></math> it holds that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n \\n <mi>c</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mi>c</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>|</mo>\\n \\n <mo>≥</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n <annotation> $|c(u)-c(v)|\\\\ge \\\\lambda $</annotation>\\n </semantics></math>. In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>max</mi>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>Δ</mi>\\n \\n <msup>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\max \\\\{n,2\\\\lambda \\\\}+{\\\\rm{\\\\Delta }}{(H)}^{2}\\\\lceil \\\\mathrm{log}n\\\\rceil $</annotation>\\n </semantics></math>. This result improves on the previously existing approximation algorithms as it is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <msup>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $({\\\\rm{\\\\Delta }}{(H)}^{2}\\\\lceil \\\\mathrm{log}n\\\\rceil )$</annotation>\\n </semantics></math>-absolutely approximate, that is, with an additive error over the optimum. We also present an infinite family of trees <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>T</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(T)=3$</annotation>\\n </semantics></math> for which the coloring of cliques with backbones <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> requires at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>max</mi>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>Ω</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\max \\\\{n,2\\\\lambda \\\\}+{\\\\rm{\\\\Omega }}(\\\\mathrm{log}n)$</annotation>\\n </semantics></math> colors for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math> close to <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{n}{2}$</annotation>\\n </semantics></math>. The construction draws on the theory of Fibonacci numbers, particularly on Zeckendorf representations.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"107 1\",\"pages\":\"5-28\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23108\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23108","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

一个图的-骨干着色及其子图(也称为骨干图)是一个函数,它确保......和......是一个适当的着色。在本文中,我们提出了一种方法,可以在线性时间内为具有树状和森林状骨干图的小块着色,且最大着色不超过 .这一结果改进了之前已有的近似算法,因为它是绝对近似的,即在最优值上有加法误差。我们还提出了一个无穷树族,对于这个无穷树族,具有骨干的小群着色至少需要接近......的颜色。 这个构造借鉴了斐波那契数理论,特别是泽肯多夫(Zeckendorf)表示法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On λ $\lambda $ -backbone coloring of cliques with tree backbones in linear time

A λ $\lambda $ -backbone coloring of a graph G $G$ with its subgraph (also called a backbone) H $H$ is a function c : V ( G ) { 1 , , k } $c:V(G)\to \{1,\ldots ,k\}$ ensuring that c $c$ is a proper coloring of G $G$ and for each { u , v } E ( H ) $\{u,v\}\in E(H)$ it holds that | c ( u ) c ( v ) | λ $|c(u)-c(v)|\ge \lambda $ . In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed max { n , 2 λ } + Δ ( H ) 2 log n $\max \{n,2\lambda \}+{\rm{\Delta }}{(H)}^{2}\lceil \mathrm{log}n\rceil $ . This result improves on the previously existing approximation algorithms as it is ( Δ ( H ) 2 log n ) $({\rm{\Delta }}{(H)}^{2}\lceil \mathrm{log}n\rceil )$ -absolutely approximate, that is, with an additive error over the optimum. We also present an infinite family of trees T $T$ with Δ ( T ) = 3 ${\rm{\Delta }}(T)=3$ for which the coloring of cliques with backbones T $T$ requires at least max { n , 2 λ } + Ω ( log n ) $\max \{n,2\lambda \}+{\rm{\Omega }}(\mathrm{log}n)$ colors for λ $\lambda $ close to n 2 $\frac{n}{2}$ . The construction draws on the theory of Fibonacci numbers, particularly on Zeckendorf representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信