在线性时间内对具有树状骨干的小群进行λ $\lambda $骨干着色

Pub Date : 2024-04-29 DOI:10.1002/jgt.23108
Krzysztof Michalik, Krzysztof Turowski
{"title":"在线性时间内对具有树状骨干的小群进行λ $\\lambda $骨干着色","authors":"Krzysztof Michalik,&nbsp;Krzysztof Turowski","doi":"10.1002/jgt.23108","DOIUrl":null,"url":null,"abstract":"<p>A <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math>-backbone coloring of a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with its subgraph (also called a <i>backbone</i>) <span></span><math>\n <semantics>\n <mrow>\n <mi>H</mi>\n </mrow>\n <annotation> $H$</annotation>\n </semantics></math> is a function <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n \n <mo>:</mo>\n \n <mi>V</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>→</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>…</mi>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $c:V(G)\\to \\{1,\\ldots ,k\\}$</annotation>\n </semantics></math> ensuring that <span></span><math>\n <semantics>\n <mrow>\n <mi>c</mi>\n </mrow>\n <annotation> $c$</annotation>\n </semantics></math> is a proper coloring of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> and for each <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>u</mi>\n \n <mo>,</mo>\n \n <mi>v</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>∈</mo>\n \n <mi>E</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\{u,v\\}\\in E(H)$</annotation>\n </semantics></math> it holds that <span></span><math>\n <semantics>\n <mrow>\n <mo>|</mo>\n \n <mi>c</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>u</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>−</mo>\n \n <mi>c</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>v</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>|</mo>\n \n <mo>≥</mo>\n \n <mi>λ</mi>\n </mrow>\n <annotation> $|c(u)-c(v)|\\ge \\lambda $</annotation>\n </semantics></math>. In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed <span></span><math>\n <semantics>\n <mrow>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>Δ</mi>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n <annotation> $\\max \\{n,2\\lambda \\}+{\\rm{\\Delta }}{(H)}^{2}\\lceil \\mathrm{log}n\\rceil $</annotation>\n </semantics></math>. This result improves on the previously existing approximation algorithms as it is <span></span><math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>Δ</mi>\n \n <msup>\n <mrow>\n <mo>(</mo>\n \n <mi>H</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mn>2</mn>\n </msup>\n <mrow>\n <mo>⌈</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>⌉</mo>\n </mrow>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n <annotation> $({\\rm{\\Delta }}{(H)}^{2}\\lceil \\mathrm{log}n\\rceil )$</annotation>\n </semantics></math>-absolutely approximate, that is, with an additive error over the optimum. We also present an infinite family of trees <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n <mi>Δ</mi>\n <mrow>\n <mo>(</mo>\n \n <mi>T</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> ${\\rm{\\Delta }}(T)=3$</annotation>\n </semantics></math> for which the coloring of cliques with backbones <span></span><math>\n <semantics>\n <mrow>\n <mi>T</mi>\n </mrow>\n <annotation> $T$</annotation>\n </semantics></math> requires at least <span></span><math>\n <semantics>\n <mrow>\n <mi>max</mi>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mn>2</mn>\n \n <mi>λ</mi>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n \n <mo>+</mo>\n \n <mi>Ω</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>log</mi>\n \n <mi>n</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\max \\{n,2\\lambda \\}+{\\rm{\\Omega }}(\\mathrm{log}n)$</annotation>\n </semantics></math> colors for <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n </mrow>\n <annotation> $\\lambda $</annotation>\n </semantics></math> close to <span></span><math>\n <semantics>\n <mrow>\n <mfrac>\n <mi>n</mi>\n \n <mn>2</mn>\n </mfrac>\n </mrow>\n <annotation> $\\frac{n}{2}$</annotation>\n </semantics></math>. The construction draws on the theory of Fibonacci numbers, particularly on Zeckendorf representations.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On \\n \\n \\n λ\\n \\n $\\\\lambda $\\n -backbone coloring of cliques with tree backbones in linear time\",\"authors\":\"Krzysztof Michalik,&nbsp;Krzysztof Turowski\",\"doi\":\"10.1002/jgt.23108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math>-backbone coloring of a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with its subgraph (also called a <i>backbone</i>) <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <annotation> $H$</annotation>\\n </semantics></math> is a function <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n \\n <mo>:</mo>\\n \\n <mi>V</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>→</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>…</mi>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $c:V(G)\\\\to \\\\{1,\\\\ldots ,k\\\\}$</annotation>\\n </semantics></math> ensuring that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n <annotation> $c$</annotation>\\n </semantics></math> is a proper coloring of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> and for each <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>u</mi>\\n \\n <mo>,</mo>\\n \\n <mi>v</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>∈</mo>\\n \\n <mi>E</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{u,v\\\\}\\\\in E(H)$</annotation>\\n </semantics></math> it holds that <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>|</mo>\\n \\n <mi>c</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>u</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>−</mo>\\n \\n <mi>c</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>v</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>|</mo>\\n \\n <mo>≥</mo>\\n \\n <mi>λ</mi>\\n </mrow>\\n <annotation> $|c(u)-c(v)|\\\\ge \\\\lambda $</annotation>\\n </semantics></math>. In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>max</mi>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>Δ</mi>\\n \\n <msup>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\max \\\\{n,2\\\\lambda \\\\}+{\\\\rm{\\\\Delta }}{(H)}^{2}\\\\lceil \\\\mathrm{log}n\\\\rceil $</annotation>\\n </semantics></math>. This result improves on the previously existing approximation algorithms as it is <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>Δ</mi>\\n \\n <msup>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>H</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mn>2</mn>\\n </msup>\\n <mrow>\\n <mo>⌈</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>⌉</mo>\\n </mrow>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n <annotation> $({\\\\rm{\\\\Delta }}{(H)}^{2}\\\\lceil \\\\mathrm{log}n\\\\rceil )$</annotation>\\n </semantics></math>-absolutely approximate, that is, with an additive error over the optimum. We also present an infinite family of trees <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Δ</mi>\\n <mrow>\\n <mo>(</mo>\\n \\n <mi>T</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Delta }}(T)=3$</annotation>\\n </semantics></math> for which the coloring of cliques with backbones <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>T</mi>\\n </mrow>\\n <annotation> $T$</annotation>\\n </semantics></math> requires at least <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>max</mi>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mn>2</mn>\\n \\n <mi>λ</mi>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>+</mo>\\n \\n <mi>Ω</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>log</mi>\\n \\n <mi>n</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\max \\\\{n,2\\\\lambda \\\\}+{\\\\rm{\\\\Omega }}(\\\\mathrm{log}n)$</annotation>\\n </semantics></math> colors for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>λ</mi>\\n </mrow>\\n <annotation> $\\\\lambda $</annotation>\\n </semantics></math> close to <span></span><math>\\n <semantics>\\n <mrow>\\n <mfrac>\\n <mi>n</mi>\\n \\n <mn>2</mn>\\n </mfrac>\\n </mrow>\\n <annotation> $\\\\frac{n}{2}$</annotation>\\n </semantics></math>. The construction draws on the theory of Fibonacci numbers, particularly on Zeckendorf representations.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一个图的-骨干着色及其子图(也称为骨干图)是一个函数,它确保......和......是一个适当的着色。在本文中,我们提出了一种方法,可以在线性时间内为具有树状和森林状骨干图的小块着色,且最大着色不超过 .这一结果改进了之前已有的近似算法,因为它是绝对近似的,即在最优值上有加法误差。我们还提出了一个无穷树族,对于这个无穷树族,具有骨干的小群着色至少需要接近......的颜色。 这个构造借鉴了斐波那契数理论,特别是泽肯多夫(Zeckendorf)表示法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On λ $\lambda $ -backbone coloring of cliques with tree backbones in linear time

A λ $\lambda $ -backbone coloring of a graph G $G$ with its subgraph (also called a backbone) H $H$ is a function c : V ( G ) { 1 , , k } $c:V(G)\to \{1,\ldots ,k\}$ ensuring that c $c$ is a proper coloring of G $G$ and for each { u , v } E ( H ) $\{u,v\}\in E(H)$ it holds that | c ( u ) c ( v ) | λ $|c(u)-c(v)|\ge \lambda $ . In this paper we propose a way to color cliques with tree and forest backbones in linear time that the largest color does not exceed max { n , 2 λ } + Δ ( H ) 2 log n $\max \{n,2\lambda \}+{\rm{\Delta }}{(H)}^{2}\lceil \mathrm{log}n\rceil $ . This result improves on the previously existing approximation algorithms as it is ( Δ ( H ) 2 log n ) $({\rm{\Delta }}{(H)}^{2}\lceil \mathrm{log}n\rceil )$ -absolutely approximate, that is, with an additive error over the optimum. We also present an infinite family of trees T $T$ with Δ ( T ) = 3 ${\rm{\Delta }}(T)=3$ for which the coloring of cliques with backbones T $T$ requires at least max { n , 2 λ } + Ω ( log n ) $\max \{n,2\lambda \}+{\rm{\Omega }}(\mathrm{log}n)$ colors for λ $\lambda $ close to n 2 $\frac{n}{2}$ . The construction draws on the theory of Fibonacci numbers, particularly on Zeckendorf representations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信