Isabela Dainezi, Brian Gleeson, Bruno Resende Buzatti, Artur Mariano de Sousa Malafaia, Carlos Alberto Della Rovere
{"title":"钛铌铬多元素合金在 800-1000 °C 空气中的氧化行为","authors":"Isabela Dainezi, Brian Gleeson, Bruno Resende Buzatti, Artur Mariano de Sousa Malafaia, Carlos Alberto Della Rovere","doi":"10.1007/s11085-024-10246-x","DOIUrl":null,"url":null,"abstract":"<div><p>The isothermal and cyclic oxidation behavior of a multi-principal element (MPE) TiNbCr alloy at 800–1000 °C in air was studied and compared to Co-based alloy 188. The phase constitution of the MPE alloy consisted of a Nb-rich body-centered cubic (BCC) matrix and Cr-rich Laves precipitates. While isothermal tests conducted at 800 °C led to the formation of a complex mixture of Nb, Ti and Cr oxides, tests at 900 and 1000 °C resulted in the formation of an innermost Cr<sub>2</sub>O<sub>3</sub>-rich scale layer which provided improved oxidation resistance. However, for all exposure temperatures, the scaling kinetics of the alloy were linear and therefore deemed non-protective. In contrast, alloy 188 exhibited parabolic scaling kinetics and smaller mass gain per area than the MPE alloy. The similarity between isothermal and cyclic test results for the MPE alloy confirmed that the scale does not offer much protection. Additionally, for all tests, there was extensive internal oxidation and nitridation.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"101 4","pages":"789 - 810"},"PeriodicalIF":2.1000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10246-x.pdf","citationCount":"0","resultStr":"{\"title\":\"TiNbCr Multi-Principal Element Alloy Oxidation Behavior in Air at 800–1000 °C\",\"authors\":\"Isabela Dainezi, Brian Gleeson, Bruno Resende Buzatti, Artur Mariano de Sousa Malafaia, Carlos Alberto Della Rovere\",\"doi\":\"10.1007/s11085-024-10246-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The isothermal and cyclic oxidation behavior of a multi-principal element (MPE) TiNbCr alloy at 800–1000 °C in air was studied and compared to Co-based alloy 188. The phase constitution of the MPE alloy consisted of a Nb-rich body-centered cubic (BCC) matrix and Cr-rich Laves precipitates. While isothermal tests conducted at 800 °C led to the formation of a complex mixture of Nb, Ti and Cr oxides, tests at 900 and 1000 °C resulted in the formation of an innermost Cr<sub>2</sub>O<sub>3</sub>-rich scale layer which provided improved oxidation resistance. However, for all exposure temperatures, the scaling kinetics of the alloy were linear and therefore deemed non-protective. In contrast, alloy 188 exhibited parabolic scaling kinetics and smaller mass gain per area than the MPE alloy. The similarity between isothermal and cyclic test results for the MPE alloy confirmed that the scale does not offer much protection. Additionally, for all tests, there was extensive internal oxidation and nitridation.</p></div>\",\"PeriodicalId\":724,\"journal\":{\"name\":\"Oxidation of Metals\",\"volume\":\"101 4\",\"pages\":\"789 - 810\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11085-024-10246-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oxidation of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11085-024-10246-x\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10246-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
TiNbCr Multi-Principal Element Alloy Oxidation Behavior in Air at 800–1000 °C
The isothermal and cyclic oxidation behavior of a multi-principal element (MPE) TiNbCr alloy at 800–1000 °C in air was studied and compared to Co-based alloy 188. The phase constitution of the MPE alloy consisted of a Nb-rich body-centered cubic (BCC) matrix and Cr-rich Laves precipitates. While isothermal tests conducted at 800 °C led to the formation of a complex mixture of Nb, Ti and Cr oxides, tests at 900 and 1000 °C resulted in the formation of an innermost Cr2O3-rich scale layer which provided improved oxidation resistance. However, for all exposure temperatures, the scaling kinetics of the alloy were linear and therefore deemed non-protective. In contrast, alloy 188 exhibited parabolic scaling kinetics and smaller mass gain per area than the MPE alloy. The similarity between isothermal and cyclic test results for the MPE alloy confirmed that the scale does not offer much protection. Additionally, for all tests, there was extensive internal oxidation and nitridation.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.