Muhammad Ashfaq, Zeeshan Asghar, Yufeng Nie, Wasfi Shatanawi
{"title":"将微极性流体模型应用于狭窄和血栓形成的导管动脉血流","authors":"Muhammad Ashfaq, Zeeshan Asghar, Yufeng Nie, Wasfi Shatanawi","doi":"10.1142/s0217979225500481","DOIUrl":null,"url":null,"abstract":"<p>This paper presents a model of nonisothermal blood flow through a diseased arterial segment due to the presence of stenosis and thrombosis. The rheological properties of the blood in the annulus are captured by utilizing micropolar fluid model. The equation describing the blood flow and heat transfer is developed under the assumption that stenosis growth into the lumen of the artery is small as compared to the average radius of the artery. Biological processes like intimal proliferation of cells or changes in artery caliber may be activated by small growths that cause moderate stenotic blockages. Closed-form solutions for temperature, velocity, resistance impedance and wall shear stress are obtained and then utilized to estimate the impact of various physical parameters on micropolar blood flow. Graphs are plotted to illustrate variations in temperature, velocity, shear stress at the wall and resistance impedance against different controlling parameters. The results are also validated via the bvp4c approach.</p>","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"43 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis\",\"authors\":\"Muhammad Ashfaq, Zeeshan Asghar, Yufeng Nie, Wasfi Shatanawi\",\"doi\":\"10.1142/s0217979225500481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper presents a model of nonisothermal blood flow through a diseased arterial segment due to the presence of stenosis and thrombosis. The rheological properties of the blood in the annulus are captured by utilizing micropolar fluid model. The equation describing the blood flow and heat transfer is developed under the assumption that stenosis growth into the lumen of the artery is small as compared to the average radius of the artery. Biological processes like intimal proliferation of cells or changes in artery caliber may be activated by small growths that cause moderate stenotic blockages. Closed-form solutions for temperature, velocity, resistance impedance and wall shear stress are obtained and then utilized to estimate the impact of various physical parameters on micropolar blood flow. Graphs are plotted to illustrate variations in temperature, velocity, shear stress at the wall and resistance impedance against different controlling parameters. The results are also validated via the bvp4c approach.</p>\",\"PeriodicalId\":14108,\"journal\":{\"name\":\"International Journal of Modern Physics B\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Modern Physics B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217979225500481\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217979225500481","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Application of micropolar fluid model to blood flow through catheterized artery with stenosis and thrombosis
This paper presents a model of nonisothermal blood flow through a diseased arterial segment due to the presence of stenosis and thrombosis. The rheological properties of the blood in the annulus are captured by utilizing micropolar fluid model. The equation describing the blood flow and heat transfer is developed under the assumption that stenosis growth into the lumen of the artery is small as compared to the average radius of the artery. Biological processes like intimal proliferation of cells or changes in artery caliber may be activated by small growths that cause moderate stenotic blockages. Closed-form solutions for temperature, velocity, resistance impedance and wall shear stress are obtained and then utilized to estimate the impact of various physical parameters on micropolar blood flow. Graphs are plotted to illustrate variations in temperature, velocity, shear stress at the wall and resistance impedance against different controlling parameters. The results are also validated via the bvp4c approach.
期刊介绍:
Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.