Lingaraj Behera, Lopamudra Mishra, Monalisa Mishra and Sasmita Mohapatra
{"title":"用于甘氨酸双重检测和体内外甘氨酸成像的 Ca@Cu-CD 纳米探针","authors":"Lingaraj Behera, Lopamudra Mishra, Monalisa Mishra and Sasmita Mohapatra","doi":"10.1039/D4TB00060A","DOIUrl":null,"url":null,"abstract":"<p >Hydrothermally prepared copper-doped carbon dots (Cu-CDs) were modified with Ca<small><sup>2+</sup></small>, which serve as an excellent platform for the recognition of glycine. The feeble emission of Ca@Cu-CD increases substantially in the presence of glycine due to aggregation-induced emission. At the same time, there was a 5-fold increase in the current response of the Ca@Cu-CD modified electrode as compared to the control. The exceptional combination of fluorescence and conducting properties, along with Ca-glycine interaction, establishes our probe as a dual sensor for the detection of glycine in real serum samples. The limit of detection for this nonenzymatic fluorescence and electrochemical sensing are 17.2 and 4.1 nM, respectively. Furthermore, an extensive evaluation of the toxicity and bioimaging properties in fruit fly <em>Drosophila melanogaster</em> shows that the Ca@Cu-CD probe is not cytotoxic and can be applied for <em>ex vivo</em> imaging of glycine.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 21","pages":" 5181-5193"},"PeriodicalIF":6.1000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ca@Cu-CD nanoprobe for dual detection of glycine and ex vivo glycine imaging†\",\"authors\":\"Lingaraj Behera, Lopamudra Mishra, Monalisa Mishra and Sasmita Mohapatra\",\"doi\":\"10.1039/D4TB00060A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hydrothermally prepared copper-doped carbon dots (Cu-CDs) were modified with Ca<small><sup>2+</sup></small>, which serve as an excellent platform for the recognition of glycine. The feeble emission of Ca@Cu-CD increases substantially in the presence of glycine due to aggregation-induced emission. At the same time, there was a 5-fold increase in the current response of the Ca@Cu-CD modified electrode as compared to the control. The exceptional combination of fluorescence and conducting properties, along with Ca-glycine interaction, establishes our probe as a dual sensor for the detection of glycine in real serum samples. The limit of detection for this nonenzymatic fluorescence and electrochemical sensing are 17.2 and 4.1 nM, respectively. Furthermore, an extensive evaluation of the toxicity and bioimaging properties in fruit fly <em>Drosophila melanogaster</em> shows that the Ca@Cu-CD probe is not cytotoxic and can be applied for <em>ex vivo</em> imaging of glycine.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 21\",\"pages\":\" 5181-5193\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00060a\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tb/d4tb00060a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Ca@Cu-CD nanoprobe for dual detection of glycine and ex vivo glycine imaging†
Hydrothermally prepared copper-doped carbon dots (Cu-CDs) were modified with Ca2+, which serve as an excellent platform for the recognition of glycine. The feeble emission of Ca@Cu-CD increases substantially in the presence of glycine due to aggregation-induced emission. At the same time, there was a 5-fold increase in the current response of the Ca@Cu-CD modified electrode as compared to the control. The exceptional combination of fluorescence and conducting properties, along with Ca-glycine interaction, establishes our probe as a dual sensor for the detection of glycine in real serum samples. The limit of detection for this nonenzymatic fluorescence and electrochemical sensing are 17.2 and 4.1 nM, respectively. Furthermore, an extensive evaluation of the toxicity and bioimaging properties in fruit fly Drosophila melanogaster shows that the Ca@Cu-CD probe is not cytotoxic and can be applied for ex vivo imaging of glycine.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices