通过新型表面共价反应法合成磁性阿塔波来石纳米粒子及其在磁性固相萃取中的应用

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Shuaibin Wu, Xuejuan Peng
{"title":"通过新型表面共价反应法合成磁性阿塔波来石纳米粒子及其在磁性固相萃取中的应用","authors":"Shuaibin Wu, Xuejuan Peng","doi":"10.1093/chromsci/bmae020","DOIUrl":null,"url":null,"abstract":"In this study, the attapulgite nanoparticle was immobilized on the surface of magnetic nanoparticle Fe3O4 via a novel surface covalent reaction method for the magnetic solid phase extraction (MSPE) for the first time. The surface covalent reaction method has the advantages of controllable steps, and can make the magnetic attapulgite nanoparticle (MANP) have good homogeneity and high stability. Field emission scanning electron microscopy, equipped with an energy dispersive spectrometer, Nitrogen adsorption BET, X-ray diffraction and Fourier transform infrared spectroscopy were applied to characterize the prepared MANP, confirming that the attapulgite nanoparticle could be effectively immobilized on the surface of magnetic nanoparticle Fe3O4 via covalent reactions. Under optimal conditions of the MSPE experiment based on the MANP, the limits of detection were found to be 10 ng/mL for melamine and 3 ng/mL for cyromazine with a relative standard deviation < 10% by a high-performance liquid chromatography system. Meanwhile, 0.1 mg/mL melamine in milk and 0.1 mg/mL cyromazine in cucumber can also be detected according to our MSPE procedure. More importantly, the MANP still has good magnetism and enrichment efficiency after several decades of use. These results showed that the MANP prepared by our method is a kind of promising material for the MSPE.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Magnetic Attapulgite Nanoparticles Via a Novel Surface Covalent Reaction Method and its Application in the Magnetic Solid Phase Extraction\",\"authors\":\"Shuaibin Wu, Xuejuan Peng\",\"doi\":\"10.1093/chromsci/bmae020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the attapulgite nanoparticle was immobilized on the surface of magnetic nanoparticle Fe3O4 via a novel surface covalent reaction method for the magnetic solid phase extraction (MSPE) for the first time. The surface covalent reaction method has the advantages of controllable steps, and can make the magnetic attapulgite nanoparticle (MANP) have good homogeneity and high stability. Field emission scanning electron microscopy, equipped with an energy dispersive spectrometer, Nitrogen adsorption BET, X-ray diffraction and Fourier transform infrared spectroscopy were applied to characterize the prepared MANP, confirming that the attapulgite nanoparticle could be effectively immobilized on the surface of magnetic nanoparticle Fe3O4 via covalent reactions. Under optimal conditions of the MSPE experiment based on the MANP, the limits of detection were found to be 10 ng/mL for melamine and 3 ng/mL for cyromazine with a relative standard deviation < 10% by a high-performance liquid chromatography system. Meanwhile, 0.1 mg/mL melamine in milk and 0.1 mg/mL cyromazine in cucumber can also be detected according to our MSPE procedure. More importantly, the MANP still has good magnetism and enrichment efficiency after several decades of use. These results showed that the MANP prepared by our method is a kind of promising material for the MSPE.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1093/chromsci/bmae020\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1093/chromsci/bmae020","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究首次采用新型表面共价反应法将磁性阿塔蓬石纳米粒子固定在磁性纳米粒子Fe3O4表面,用于磁性固相萃取(MSPE)。表面共价反应法具有步骤可控的优点,可使磁性阿塔蓬石纳米粒子(MANP)具有良好的均匀性和高稳定性。应用配备能量色散光谱仪的场发射扫描电子显微镜、氮吸附 BET、X 射线衍射和傅立叶变换红外光谱对制备的 MANP 进行了表征,证实了通过共价反应,磁性纳米粒子 Fe3O4 表面可有效固定阿塔蓬石纳米粒子。在基于MANP的MSPE实验的最佳条件下,通过高效液相色谱系统检测到三聚氰胺的检出限为10 ng/mL,环丙氨嗪的检出限为3 ng/mL,相对标准偏差为10%。同时,根据我们的MSPE程序,牛奶中0.1毫克/毫升的三聚氰胺和黄瓜中0.1毫克/毫升的环丙氨嗪也能被检测出来。更重要的是,经过几十年的使用,曼氏催化还具有良好的磁性和富集效率。这些结果表明,用我们的方法制备的 MANP 是一种很有前途的 MSPE 材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Magnetic Attapulgite Nanoparticles Via a Novel Surface Covalent Reaction Method and its Application in the Magnetic Solid Phase Extraction
In this study, the attapulgite nanoparticle was immobilized on the surface of magnetic nanoparticle Fe3O4 via a novel surface covalent reaction method for the magnetic solid phase extraction (MSPE) for the first time. The surface covalent reaction method has the advantages of controllable steps, and can make the magnetic attapulgite nanoparticle (MANP) have good homogeneity and high stability. Field emission scanning electron microscopy, equipped with an energy dispersive spectrometer, Nitrogen adsorption BET, X-ray diffraction and Fourier transform infrared spectroscopy were applied to characterize the prepared MANP, confirming that the attapulgite nanoparticle could be effectively immobilized on the surface of magnetic nanoparticle Fe3O4 via covalent reactions. Under optimal conditions of the MSPE experiment based on the MANP, the limits of detection were found to be 10 ng/mL for melamine and 3 ng/mL for cyromazine with a relative standard deviation < 10% by a high-performance liquid chromatography system. Meanwhile, 0.1 mg/mL melamine in milk and 0.1 mg/mL cyromazine in cucumber can also be detected according to our MSPE procedure. More importantly, the MANP still has good magnetism and enrichment efficiency after several decades of use. These results showed that the MANP prepared by our method is a kind of promising material for the MSPE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信